ZeRO++: Extremely Efficient Collective Communication for Giant Model Training

G. Wang et al., arXiv'23

Presenters: Noelle Crawford, Hyungyo Kim

Distributed Training of Large Models

Distributed training is now a default due to the large model and training data size

[K. He et al., Proceedings of IEEE'21]

3D Parallelism

- \Box data + pipeline + tensor parallelism
- ❏ achieves excellent compute/memory efficiency
- ❏ But, requires code refactoring

ZeRO

- ❏ No model code refactoring
- ❏ Good throughput scalability

(Recap) ZeRO Stage 3

Divides model parameters, gradients, and optimizer states across all GPUs

• Close to linear reduction in memory footprint

Communication can be the bottleneck for

- (case 1) systems with slow interconnects
- (case 2) small per-GPU batch size
	- Communication cost is amortized across tokens in a single GPUs batch
	- Global batch size limited due to convergence

[Interconnect BW, batch size vs Throughput]

ZeRO Communication Overhead

Communication requirements

- Forward All-Gather: Model Parameters (M)
- Backward All-Gather: Model Parameters (M)
- Backward Reduce-Scatter: Gradients (M)
- \rightarrow Total communication volume: 3M
- Occurs both on fast intra-node interconnect and slow inter-node interconnect
- Bottlenecked by inter-node communication

ZeRO++: 3M → **0.75M Comm. Cost Reduction**

Prior Works on Communication Reduction

Quantization

- If done naively, can severely impact model accuracy
- Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations

- Trades on-device memory *when available* for communication (MiCS)
- Replicate model states across sub-groups
- Similar to hpZ (coming soon) but with more replication

Gradient Compression

- Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer states
- Not directly applicable to ZeRO-3

ZeRO++ Design Overview

Quantization qwZ: Block quantization of weights

- If done naively, can severely impact model accuracy
- Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations hpZ: Hierarchical partitioning strategy

- Trades on-device memory *when available* for communication (MiCS)
- Replicate model states across sub-groups
- Similar to hpZ (coming soon) but with more replication

Gradient Compression qgZ: Quantization of gradients

- Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer states
- Not directly applicable to ZeRO-3

bonus: overlap strategy for compute/comm., custom CUDA kernels

qwZ: Block Quantization of Weights

- Reduce weights from FP16 -> INT8
- Quantizing all weights together leads to large decreases in accuracy
- Block quantization introduces a tradeoff between better accuracy (smaller block size) and smaller overhead (larger block size)

hpZ: Hierarchical Partitioning Strategy

- For current size of models, no need to spread weights among 100s of GPUs
	- "Caching" weights w/in node allow for faster communication during backward pass
- Primary and secondary partitions
	- Primary: across all GPUs, Secondary: w/in node
- Forward pass: primary partition, Backward pass: secondary partition

qgZ: Quantization of Gradients

- Ring-based reduce-scatter
	- N repeats of quant./dequant.
	- high communication latency and low accuracy

- Proposed: use all-to-all reduce-scatter
	- Solves problem of repeated Q+D
	- New problem: increase in inter-node communication when using 1-hop

IT ILLINOIS

Electrical & Computer Engineering **COLLEGE OF ENGINEERING**

qgZ: Quantization of Gradients (cont.)

- Inter-node comms. volume of all-to-all increase with number of devices (M vs N^*M/Z)
- Proposed: Hierarchical 2-hop all-to-all (M/Z)
	- 1st hop: intra-node, 2nd hop: inter-node

qgZ: Quantization of Gradients (cont.)

- Gradient misplacement issue
	- Some gradients do not end up on correct machines
- Solve via tensor slice re-ordering before transmission
	- \circ [0, 1, 2, ... YX-2, YX-1] -> [0, X, 2X, ... (Y-1)X, 1, X+1, (Y-1)X+1, ... YX-1]

Additional Optimizations

Overlapping Compute & Comm.

- Non-blocking asynchronous quant.
	- Synchronize quantization stream before used in compute stream
- Pipeline chunks of intra/inter node communication for qgZ

Reorder+Quant Dequant+Reduction+Quant Dequant+Reduction No Pipeline α Intra-node A2A D Inter-node A2A R Data Chunk 1 Intra-node 2-Stage Pipeline Inter-node A2A Ω **Latency Reduction** Data Chunk 2 Intra-node Inter-node A2A R Time

Custom CUDA Kernels

- Able to fully utilize BW due to quantization and good ILP
- Tune size of quantization blocks to minimize traffic with good accuracy
- Fuse tensor reshaping and quantization into a single kernel

ZeRO++ Cross-Node Communication Volume Analysis

Forward All-Gather

• Weights are quantized FP16 -> INT8 reducing comm. from M -> 0.5M

Backward All-Gather

● No cross-node traffic

Backward Reduce-Scatter

• Gradients are quantized FP16 -> INT4 reducing comm. from M -> 0.25M

In total, only 0.75M per training iteration (down from 3M)

Experimental Setup

Hardware

- 24 NVIDIA DGX-2 nodes (16 V100 SXM3 32 GB GPUs each)
- Nodes connected with infiniband, NVLink w/in nodes

Baseline

 \bullet ZeRO-3

Model Configurations

- GPT-style transformers
- (micro batch size) 2k tokens per GPU

Results–1: Scalability and Generalizability

- \bullet Scales well with $\#$ of GPUs
- Higher improvement for lower inter-node BW clusters

Table 2: End-to-end speedup of ZeRO++ on 384 GPUs with different model sizes

• Consistent improvement across different model sizes

Results–2: Ablation Study

- Each technique results in similar throughput improvements
- 1.3x for low-BW clusters, 1.15x for high-BW clusters

Table 3: End-to-end performance when using ZeRO++ w.\wo. optimized kernels

- Custom quant. kernel: 1.67x
- Kernel fusion: 1.15x

Results–3: Comparison to Previous Work

Table 4: hpZ vs MiCS evaluation on a 4 node cluster (16 V100 **GPUs per node**)

• Allows training of larger model than MiCS, which shards the optimizer states w/in nodes

Results–4: Convergence Validation

Table 5: Validation loss at the end of training (GPT 350M / 30B tokens)

• Achieves <1% LM loss within that of the baseline

• Very close convergence speed compared to that of the baseline

II ILLINOIS Electrical & Computer Engineering **COLLEGE OF ENGINEERING**

Our Thoughts

Strengths

- Real world E2E performance improvement with a huge engineering effort
- Practicality: easy to see how this could really be deployed in a datacenter

Weaknesses

- Novelty
	- Authors are simply mixing many pre-existing methods
- **Explanation on design choices**
	- Why quantize to INT8 / INT4 and not another bit-width? What's the block size for quantization?
- Validation for convergence is weak: evaluated on a small model

Future Directions

- As number of GPUs grows, all-to-all inter-node might become infeasible. How can this be adapted for other network topologies?
- Generalize and analyze the framework to different bit-width for quantization