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Distributed Training of Large Models

Distributed training is now a default due to the large model and training data size

! i 3D Parallelism
-& Q data + pipeline + tensor parallelism

[ achieves excellent compute/memory
efficiency
A But, requires code refactoring
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A No model code refactoring
[K. He et al., Proceedings of IEEE’21] A Good throughput scalability

ILLINOIS
ZeRO++, Crawford & Kim

Electrical & Computar Enginee
COLLEGE OF ExGINTIRING



(Recap) ZeRO Stage 3

Divides model parameters, gradients, and optimizer states across all GPUs

e Close to linear reduction in memory footprint

Communication can be the bottleneck for

e (case 1) systems with slow
interconnects

e (case 2) small per-GPU batch size
o Communication cost is amortized across
tokens in a single GPUs batch
o Global batch size limited due to
convergence
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[Interconnect BW, batch size vs Throughput]
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ZeRO Communication Overhead

Communication requirements

e Forward All-Gather: Model Parameters (M)
e Backward All-Gather: Model Parameters (M)
e Backward Reduce-Scatter: Gradients (M)

— Total communication volume: 3M

e Occurs both on fast intra-node interconnect and slow inter-node interconnect
e Bottlenecked by inter-node communication

ZeRO++: 3M — 0.75M Comm. Cost Reduction
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Prior Works on Communication Reduction

Quantization

e If done naively, can severely impact model accuracy
e Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations

e Trades on-device memory when available for communication (MiCS)

e Replicate model states across sub-groups
e Similar to hpZ (coming soon) but with more replication

Gradient Compression

e Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer

states
e Not directly applicable to ZeRO-3
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ZeRO++ Design Overview

Quantization ===y qwZ: Block quantization of weights

e If done naively, can severely impact model accuracy
e Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations === hpZ: Hierarchical partitioning strategy

e Trades on-device memory when available for communication (MiCS)
e Replicate model states across sub-groups
e Similar to hpZ (coming soon) but with more replication

Gradient Compression == qgZ: Quantization of gradients

e Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer
states
e Not directly applicable to ZeRO-3

bonus: overlap strategy for compute/comm., custom CUDA kernels
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gwZ: Block Quantization of Weights

(a) Baseline vs. Blocked Quantization (b) Quantization Error
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e Reduce weights from FP16 -> INT8
Quantizing all weights together leads to large decreases in accuracy
Block quantization introduces a tradeoff between better accuracy (smaller
block size) and smaller overhead (larger block size)
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hpZ: Hierarchical Partitioning Strategy

Machine 0 Machine 1 Machine 0 Machine 1
EBE B BE B

All-gather on primary weight partitions ! All-gather on secondary weight partitions

(ZeRO-3) (hpZ in ZeRO++)

e For current size of models, no need to spread weights among 100s of GPUs
o “Caching” weights w/in node allow for faster communication during backward pass

e Primary and secondary partitions
o Primary: across all GPUs, Secondary: w/in node

e Forward pass: primary partition, Backward pass: secondary partition
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ggZ: Quantization of Gradients
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NCCL Ring-based reduce-scatter (ZeRO-3) 1-hop all-to-all (qgZ in ZeRO++)
# of sequential Q+D == # of GPUs # of sequential Q+D == 1
e Ring-based reduce-scatter e Proposed: use all-to-all reduce-scatter
o N repeats of quant./dequant. o Solves problem of repeated Q+D
o high communication latency and low o New problem: increase in inter-node

accuracy communication when using 1-hop
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ggZ: Quantization of Gradients (cont.)

Cross-node gradient comm. volume
(zeRO-3)

Cross-node gradient comm. volume
(qgZ in ZeRO++) Step 1: Intra-node all-to-all

‘ GPUs per node =N Model size = M Quantization compression ratio = Z ‘ ‘ GPUs per node =N Model size = M Quantization compression ratio = Z |
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Reduce-scatter M 1 1-hop all-to-all N*M/Z Each GPU comm. volume reduction: 1 Cross-node traffic reduction:
: M/Z => M/(Z*N) I N*M/Z => M/zZ
1
1 1
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Step 2: Inter-node all-to-all

e Inter-node comms. volume of all-to-all increase with number of devices (M vs N*M/Z)
e Proposed: Hierarchical 2-hop all-to-all (M/Z)
o 1st hop: intra-node, 2nd hop: inter-node
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ggZ: Quantization of Gradients (cont.)

Machine 0 Machine 1

[

XD ey
i m
B @ B m

Notation
H Initial grad. slices 4 Grad. after intra-comm

Correct final grad. EGrad. after inter-comm

Machine 0 Machine 1 Machine 0 Machine 1 Machine 0 Machine 1
24|

i ||an III |ln

. nnnn lnln

m < E ><n

3 2 1 7.
LI R, T m ! L - G
t‘ I n orrec

,
A

S|
) 2 § 8 @

Step 1: intra-node all-to-all

Step 2: inter-node all-to-all Step 1: intra-node all-to-all Step 2: inter-node all-to-all

e Gradient misplacement issue
o Some gradients do not end up on correct machines
e Solve via tensor slice re-ordering before transmission
o [0,1,2,...YX-2, YX-1]-> [0, X, 2X, ...(Y=-1)X, 1, X+1, (Y-1)X+1, ...YX-1]
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Additional Optimizations

Ove I"l a p p i n g C O m p Ute & C O m m . Reorder+Quant i Dequant+Reduction+Quant Dequant+Reduction

e Non-blocking asynchronous quant. nearotenn  [B] —— al

o Synchronize quantization stream before ————
used in compute stream Intranode o internoden2a |[g]

e Pipeline chunks of intra/inter node
communication for qgZ

No Pipeline

Latency Reduction

Data Chunk 2

|/ Intra-node [ ]
I( A2A J‘ Inter-node A2A ‘l

2-Stage Pipeline

Time

Custom CUDA Kernels

e Able to fully utilize BW due to quantization and good ILP
e Tune size of quantization blocks to minimize traffic with good accuracy
e Fuse tensor reshaping and quantization into a single kernel
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ZeRO++ Cross-Node Communication Volume Analysis

Forward All-Gather

e \Weights are quantized FP16 -> INT8 reducing comm. from M -> 0.5M
Backward All-Gather

e No cross-node traffic
Backward Reduce-Scatter

e Gradients are quantized FP16 -> INT4 reducing comm. from M -> 0.25M

In total, only 0.75M per training iteration (down from 3M)
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Experimental Setup

Hardware

e 24 NVIDIADGX-2 nodes (16 V100 SXM3 32 GB GPUs each)
e Nodes connected with infiniband, NVLink w/in nodes

Baseline
e /eRO-3
Model Configurations

e GPT-style transformers
e (micro batch size) 2k tokens per GPU
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Results—1: Scalability and Generalizability

BN Baseline B ZeRO++

Table 2: End-to-end speedup of ZeRO++ on 384 GPUs with

IB: 1, Micro Batch per GPU: 1K Tokens  IB: 8, Micro Batch per GPU: 1K Tokens

EC— 7, different model sizes
2 48 8
2 301 31 43
o 40 4 37 36 38
o 31
g 209 . " i - 1 1B Connection 8 IB Connections
2 104 201 Model Tokens | Baseline ZeRO++ — Baseline ZeRO++ gsadice
E Size per GPU | TFELOPs TFLOPs “Pe¢““P | TrLops TrFLOPs ‘PP
0~ & Jas 28 B 0 & dzs 28 B 138B 2K 19.96 37.90 1.90x 47.55 55.30 1.16x
> ° ¥ to : i 138B 1K 11.25 21.81 1.94x 34.19 44.38 1.30x
IB: 1, Micro Batch per GPU: 2K Tokens  IB: 8, Micro Batch per GPU: 2K Tokens
7 . T — 91B 2K 19.99 38.06 1.90x 47.74 56.26 1.18x
2 e al =m L 91B 1K 11.27 21.93 1.95x 34.49 44.36 1.29x
5 e N . 407 49B 2K 20.06 38.08 1.90x 48.05 56.24 1.17x
g o e = 49B 1K 11.27 21.95 1.95x 34.54 44.46 1.29x
2 20 18B 2K 25.98 46.40 1.79x 47.31 53.65 1.13x
. ol 18B 1K 14.15 30.57 2.16x 31.27 37.87 1.21x
64 128 256 384 64 128 256 384
GPUs GPUs GPUs GPUs GPUs GPUs GPUs GPUs
e Scales well with # of GPUs e Consistent improvement
e Higher improvement for lower across different model sizes

inter-node BW clusters
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Results—2: Ablation Study

BN Baseline BN gqgZ W ZeRO++ Table 3: End-to-end performance when using ZeRO++ w.\wo.
. qwZ m hpZ optimized kernels
Number of IB: 1 Number of IB: 8
> 51| 60 5556 56 58 59 Optimized Optimized
g 48 sl o :
< 40 373534 404 37 424243 Quantization Fusion TFLOPs
= Kernel Kernel
g 207 20 1 Baseline N/A N/A 15
= . 0 ZeRO++ No No 19.73
Mol Walss Yons Neln ZeRO++ |  No % [ PIE
ZeRO++ Yes No 31.40
ZeRO++ Yes Yes 36.16
e Each technique results in similar c c w
. ® .
throughput improvements ustom quant. kernel: 1.67x
e 1.3x for low-BW clusters, 1.15x e Kernel fusion: 1.15x

for high-BW clusters
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Results—3: Comparison to Previous Work

Table 4: hpZ vs MiCS evaluation on a 4 node cluster (16 V100
GPUs per node)

ZeRO hpZ MiCS

Model Size | Token Size TFLOPs | TFLOPs | TFLOPs

7.5B 1K 36.99 38.39 38.96
7.5B 2K 53.3 54.4 52.72
18B 1K 51.47 52.42 OOM
18B 2K 60.94 61.44 OOM

e Allows training of larger model
than MiCS, which shards the
optimizer states w/in nodes
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Results—4: Convergence Validation

Table 5: Validation loss at the end of training (GPT 350M /

30B tokens) Validation LM loss vs. Steps
¥ .
Evaluation LM loss 7 —~— Baseline
Baseline 2.121762 2 . = ZEROFE
ZeRO++ &
(hpZ&qwZ&qgZ on) 2165584 = B
ZeRO++ 2
(hpZ&qwZ on; 2.134013 S 41
qgZ on for first 50%) © 34 L
ZeRO++
(hpZ&qwZ on; qgZ off) 2121653 24 : .
0 20000 40000 60000
steps
e Achieves <1% LM loss within e \ery close convergence speed
that of the baseline compared to that of the baseline
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Our Thoughts

Strengths

e Real world E2E performance improvement with a huge engineering effort
e Practicality: easy to see how this could really be deployed in a datacenter

Weaknesses

e Novelty
o  Authors are simply mixing many pre-existing methods

e Explanation on design choices
o  Why quantize to INT8 / INT4 and not another bit-width? What'’s the block size for quantization?

e \Validation for convergence is weak: evaluated on a small model

Future Directions

e As number of GPUs grows, all-to-all inter-node might become infeasible. How can this be

adapted for other network topologies?
e Generalize and analyze the framework to different bit-width for quantization
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