
ZeRO++: Extremely Efficient Collective 
Communication for Giant Model Training

Presenters: Noelle Crawford, Hyungyo Kim

G. Wang et al., arXiv’23



Distributed Training of Large Models

3D Parallelism

❏ data + pipeline + tensor parallelism
❏ achieves excellent compute/memory 

efficiency
❏ But, requires code refactoring 

ZeRO

❏ No model code refactoring
❏ Good throughput scalability

ZeRO++, Crawford & Kim

[K. He et al., Proceedings of IEEE’21]

Distributed training is now a default due to the large model and training data size 



Communication can be the bottleneck for

● (case 1) systems with slow 
interconnects

● (case 2) small per-GPU batch size 
○ Communication cost is amortized across 

tokens in a single GPUs batch
○ Global batch size limited due to 

convergence

ZeRO++, Crawford & Kim

(Recap) ZeRO Stage 3
Divides model parameters, gradients, and optimizer states across all GPUs

● Close to linear reduction in memory footprint

[Interconnect BW, batch size vs Throughput]



Communication requirements

● Forward All-Gather: Model Parameters (M)
● Backward All-Gather: Model Parameters (M)
● Backward Reduce-Scatter: Gradients (M)

→ Total communication volume: 3M

● Occurs both on fast intra-node interconnect and slow inter-node interconnect
● Bottlenecked by inter-node communication

ZeRO++, Crawford & Kim

ZeRO Communication Overhead

ZeRO++: 3M → 0.75M Comm. Cost Reduction



Quantization

● If done naively, can severely impact model accuracy
● Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations

● Trades on-device memory when available for communication (MiCS)
● Replicate model states across sub-groups
● Similar to hpZ (coming soon) but with more replication

Gradient Compression

● Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer 
states

● Not directly applicable to ZeRO-3

ZeRO++, Crawford & Kim

Prior Works on Communication Reduction



Quantization

● If done naively, can severely impact model accuracy
● Advanced techniques: outlier filtering, block-based quantization

ZeRO-3 Optimizations

● Trades on-device memory when available for communication (MiCS)
● Replicate model states across sub-groups
● Similar to hpZ (coming soon) but with more replication

Gradient Compression

● Extreme gradient compression (1-bit ADAM, LAMB) assume each GPU has full optimizer 
states

● Not directly applicable to ZeRO-3

ZeRO++, Crawford & Kim

ZeRO++ Design Overview
qwZ: Block quantization of weights

hpZ: Hierarchical partitioning strategy

qgZ: Quantization of gradients

bonus: overlap strategy for compute/comm., custom CUDA kernels



qwZ: Block Quantization of Weights

● Reduce weights from FP16 -> INT8
● Quantizing all weights together leads to large decreases in accuracy
● Block quantization introduces a tradeoff between better accuracy (smaller 

block size) and smaller overhead (larger block size)

ZeRO++, Crawford & Kim



hpZ: Hierarchical Partitioning Strategy

● For current size of models, no need to spread weights among 100s of GPUs
○ “Caching” weights w/in node allow for faster communication during backward pass

● Primary and secondary partitions
○ Primary: across all GPUs, Secondary: w/in node

● Forward pass: primary partition, Backward pass: secondary partition

ZeRO++, Crawford & Kim



qgZ: Quantization of Gradients

● Proposed: use all-to-all reduce-scatter
○ Solves problem of repeated Q+D
○ New problem: increase in inter-node 

communication when using 1-hop

ZeRO++, Crawford & Kim

● Ring-based reduce-scatter
○ N repeats of quant./dequant.
○ high communication latency and low 

accuracy



qgZ: Quantization of Gradients (cont.)

ZeRO++, Crawford & Kim

● Inter-node comms. volume of all-to-all increase with number of devices (M vs N*M/Z)
● Proposed: Hierarchical 2-hop all-to-all (M/Z)

○ 1st hop: intra-node, 2nd hop: inter-node



qgZ: Quantization of Gradients (cont.)

● Gradient misplacement issue
○ Some gradients do not end up on correct machines

● Solve via tensor slice re-ordering before transmission
○ [0, 1, 2, …YX-2, YX-1] -> [0, X, 2X, …(Y-1)X, 1, X+1, (Y-1)X+1, …YX-1]

ZeRO++, Crawford & Kim



Additional Optimizations

Custom CUDA Kernels

● Able to fully utilize BW due to quantization and good ILP
● Tune size of quantization blocks to minimize traffic with good accuracy
● Fuse tensor reshaping and quantization into a single kernel

ZeRO++, Crawford & Kim

Overlapping Compute & Comm.

● Non-blocking asynchronous quant.
○ Synchronize quantization stream before 

used in compute stream
● Pipeline chunks of intra/inter node 

communication for qgZ



ZeRO++ Cross-Node Communication Volume Analysis

Forward All-Gather

● Weights are quantized FP16 -> INT8 reducing comm. from M -> 0.5M

Backward All-Gather

● No cross-node traffic

Backward Reduce-Scatter

● Gradients are quantized FP16 -> INT4 reducing comm. from M -> 0.25M

In total, only 0.75M per training iteration (down from 3M)

ZeRO++, Crawford & Kim



Experimental Setup 

Hardware 

● 24 NVIDIA DGX-2 nodes (16 V100 SXM3 32 GB GPUs each)
● Nodes connected with infiniband, NVLink w/in nodes

Baseline

● ZeRO-3

Model Configurations

● GPT-style transformers
● (micro batch size) 2k tokens per GPU

ZeRO++, Crawford & Kim



Results–1: Scalability and Generalizability

ZeRO++, Crawford & Kim

● Scales well with # of GPUs
● Higher improvement for lower 

inter-node BW clusters

● Consistent improvement 
across different model sizes



Results–2: Ablation Study

ZeRO++, Crawford & Kim

● Each technique results in similar 
throughput improvements

● 1.3x for low-BW clusters, 1.15x 
for high-BW clusters

● Custom quant. kernel: 1.67x
● Kernel fusion: 1.15x



Results–3: Comparison to Previous Work

ZeRO++, Crawford & Kim

● Allows training of larger model 
than MiCS, which shards the 
optimizer states w/in nodes



Results–4: Convergence Validation

ZeRO++, Crawford & Kim

● Very close convergence speed 
compared to that of the baseline

● Achieves <1% LM loss within 
that of the baseline



Our Thoughts
Strengths

● Real world E2E performance improvement with a huge engineering effort
● Practicality: easy to see how this could really be deployed in a datacenter

Weaknesses

● Novelty
○ Authors are simply mixing many pre-existing methods

● Explanation on design choices 
○ Why quantize to INT8 / INT4 and not another bit-width? What’s the block size for quantization? 

● Validation for convergence is weak: evaluated on a small model

Future Directions

● As number of GPUs grows, all-to-all inter-node might become infeasible. How can this be 
adapted for other network topologies?

● Generalize and analyze the framework to different bit-width for quantization

ZeRO++, Crawford & Kim


