
Triton
Philippe Tillet, H. T. Kung, David Cox

(MAPL ‘19)
Presented by: Krut Patel (CS 598 AIE FA24)

1

Contents

MAPL ‘19 Paper
● Background

● Core ideas

● Triton IR

● JIT Opts

● Evaluation

Triton in 2024
● Pytorch

● Triton vs TVM

● Triton v2.0

● Strengths and Limitations

● Future Directions

2

Philippe Tillet, H. T. Kung, David Cox (MAPL ‘19)

Triton: An Intermediate Language
and Compiler for Tiled Neural
Network Computations

3

Background - GPU architecture

● HBM is slow – need to load once to SRAM, do lots of compute on it (FlashAttention)

● Lots of cores (SM) – need to partition and schedule work

○ V100 has new tensor cores, 2-3 orders of magnitude more FLOPs for Matmul

4

Image Source: https://openai.com/index/triton/

Background – CUDA Programming Model

5

● Highly parallel hardware

● Each SM runs one “Block” of threads at a time

○ In this example, there are 256 threads in the

block

● There are multiple blocks in the grid

● Each thread uses threadIdx variable to find out

its own position in the grid

● Threads can use shared memory as fast

scratchpads (local to a block)
Source: CS 483 slides

Motivation

6

● Provide a better abstraction than CUDA for programming with GPUs

● But still have some control over execution schedule

CUDA TRITON TVM

Memory Coalescing Manual Automatic Automatic

Shared Memory Management Manual Automatic Automatic

Scheduling (Within SMs) Manual Automatic Automatic

Scheduling (Across SMs) Manual Manual Automatic

Parallelism Threads/Blocks/Warps Mostly Blocks Automatic

Triton Programming Model

7

● tile is a first-class language construct

● Single Instruction Multiple Thread vs Single Program Multiple Data
BLOCK = 512

@jit
def add(X, Y, Z, N):
 tid = threadIdx.x
 bid = blockIdx.x
 # scalar index
 idx = bid * BLOCK + tid
 if id < N:
 # There is no pointer in Numba.
 # Z,X,Y are dense tensors
 Z[idx] = X[idx] + Y[idx]

...
grid = (ceil_div(N, BLOCK),)
block = (BLOCK,)
add[grid, block](x, y, z, x.shape[0])

BLOCK = 512
@jit
def add(X, Y, Z, N):
 pid = program_id(0)
 # block of indices
 idx = pid * BLOCK + arange(BLOCK)
 mask = idx < N
 # Triton uses pointer arithmetics
 # rather than indexing operators
 x = load(X + idx, mask=mask)
 y = load(Y + idx, mask=mask)
 store(Z + idx, x + y, mask=mask)

...
grid = (ceil_div(N, BLOCK),)
no thread-block
add[grid](x, y, z, x.shape[0])

Numba code Triton code Source: https://openai.com/index/triton/

SIMT vs SPMD in more detail

8

SIMT implies all threads are executing in lock-step.

● This happens in a GPU warp (32 threads)

● Even though they are different threads, they execute same instructions

SPMD just says overall program can be executed on different data

● CUDA Blocks are technically SPMD, since blocks have very limited communication

and synchronization options

● Triton kernels are also defined at the CUDA block level, hence SPMD.

Triton-C

9

● Will skip, mostly irrelevant nowadays.

● Main part was the programming model, which we have discussed previously

Triton IR

10

● Modification of LLVM IR, with tile data types

i32<8,8>, float*<4>

● Broadcasting and reshape support on tiles

define kernel void @relu(float* %A, i32 %M, i32 %N) {
prologue:
 %rm = call i32 <8> get_global_range (0);
 %rn = call i32 <8> get_global_range (1);
 ; broadcast shapes
 %1 = reshape i32 <8, 8> %M;
 %M0 = broadcast i32 <8, 8> %1;
 ; ... broadcast global ranges
 %3 = reshape i32 <8, 1> %rm;
 %rm_bc = broadcast i32 <8, 8> %3;
 ; ... compute mask
 %pm = icmp slt %rm_bc , %M0;
 %pn = icmp slt %rn_bc , %N0;
 %msk = and %pm , %pn;
 ; compute pointer
 %A0 = splat float*<8, 8> %A;
 %5 = getelementptr %A0 , %rm_bc;
 %6 = mul %rn_bc , %M0;
 %pa = getelementptr %5, %6;
 ; compute result
 %a = load %pa;
 %_0 = splat float <8, 8> 0;
 %result = max %float %a, %_0;
 ; write back
 store fp32 <8, 8> %pa , %result}

Predication

11

● Recall, GPU follows a SIMT model. What happens during control divergence?

○ Aka, when some threads take if branch and others take else branch?

● GPU will run both the branches on all the threads. SIMT.

● But the inactive threads will be “masked-off”

● Only occurs at warp-level (32 threads)

○ If entire warp takes one branch, no divergence

● Triton uses predication for its own IR

● See mask variable in the add kernel

● Some loss of fidelity, as mask might be unnecessary for a warp Source:
https://www.sciencedirect.com/topics/computer
-science/thread-divergence

Optimizations: Machine-Independent

12

● Prefetching:

○ Problem: Access to memory is very slow. Bad if done inside a loop

○ Solution: Detect loops, load next tile in current iteration

● Peephole optimizations:

○ Usually, look at some sequence of

instructions, replace with a better version

○ Triton adds tile-specific algebraic

identities

Optimizations: Hierarchical Tiling

13

● Compiler needs to optimize at

various levels of hardware

organization

● Blocks -> Tile

● Warps -> Micro-Tile

● Threads -> Nano-Tile

Optimizations: Memory Coalescing

14

Mental model: Hardware will fetch 512 bytes from HBM on any access

For max perf, we want all threads to access elems from nearby locations

Image Source:
https://siboehm.com/articles/22/Fast-MM
M-on-CPU

Optimizations: Shared Memory Allocation

15

● Essential to avoid global memory accesses inside the kernel

● Classic liveness analysis pass on tiles

● If overlap is too high (exceed shared mem limits), need to spill to global mem

Image Source: https://openai.com/index/triton/

Optimizations: Shared Memory Synchronization

16

● SIMT only at warp level

○ Warps may finish shared mem writes at

different times

● During next stage, if thread reads from a

location written to by another warp, no

guarantee we will see update

● Need a block-level barrier

● Triton performs dataflow analysis to identify

Read-after-Write and Write-after-Read deps

Image Source: Programming Massively Parallel Processors by Kirk and Hwu

Extra: RAW/WAR Dataflow

17

AutoTuner

18

● Small component that finds best config based on execution times

● Triton only cares about tile sizes (at normal, micro, and nano levels)

● Much simpler compared to TVM

@triton.autotune(configs=[

 triton.Config(kwargs={'BLOCK_SIZE': 128}, num_warps=4),

 triton.Config(kwargs={'BLOCK_SIZE': 1024}, num_warps=8),

],

 key=['x_size'] # the two above configs will be evaluated anytime

 # the value of x_size changes

)

@triton.jit

def kernel(x_ptr, x_size, **META):

 BLOCK_SIZE = META['BLOCK_SIZE']

Evaluation

19

● Done on GTX1070

● Almost matches performance of

handwritten cuBLAS kernels

○ 90% of peak device performance

● cuBLAS much better for

transformers – uses 3D reductions

● A bit lacking: no sparse workloads,

which are supposed to be better

than TVM

OpenAI adoption, PyTorch, and more

Triton – now

20

PyTorch 2.0 uses Triton

21

● Torch compiler traces python code and

generates Triton for GPUs

● 86% performance improvement for

training on Nvidia’s A100 and 26% on

CPUs for inference!

● Uses Triton only for GPUs

○ Hints at non-generalizability of

Triton to other hardware

Image Source: https://pytorch.org/get-started/pytorch-2.0/

Why not TVM?

22

“On NVIDIA GPUs, we have observed better performance results from Triton than TVM

on most models. [...] TVM performance varies greatly depending on autotuning. I think

the strength of TVM is in its many non-GPU execution targets, while Triton is GPU-only.”

-From PyTorch 2.0 compiler dev (source)

● Essentially, TVM has too much to optimize – need to handwrite the schedules, or

hope the autotuner finds a good configuration

● Similar argument for polyhedral frameworks – the ILP solvers cannot deal with

large problem spaces

https://dev-discuss.pytorch.org/t/torchinductor-a-pytorch-native-compiler-with-define-by-run-ir-and-symbolic-shapes/747/9

Triton backend rewrite

23

● Common complaint – CUDA

focused

● Triton 2.0 rewritten in MLIR

● MLIR Principle: Different IRs are

better suited for different opts

● Supports multiple dialects with

successive lowering

● CPU backend is still WIP
Image Source: https://www.jokeren.tech/slides/triton_next.pdf

Thoughts

24

Strengths:

1. Easy to use, rapid iteration time
2. Uses standard compiler techniques at tile-level: powerful idea

Weaknesses:

1. Paper’s evaluation was a bit lacking – missing ablation studies on optimizations
2. Very focused on NVIDIA GPUs. Compilers are supposed to make things easier for

hardware developers too! (Triton is slowly getting better at this)
3. Syntactic matching when offloading to accelerator intrinsics. Would be nice to find

semantic equivalences (3LA, Glenside tackle this)

Future Directions

25

1. Support for other hardware. Getting CPU codegen working on Triton took ~2 years!

TPUs are probably much further away.

2. Need to focus more on memory. Hopper architecture brought many new features.

○ Async compute, overlapping ops

○ Memory layouts and swizzles

3. AutoTuner improvements

Let’s Discuss!

26

