
SmoothQuant: Accurate and Efficient Post-Training
Quantization for Large Language Models

ICML 2023
Authors: Guangxuan Xiao (Massachusetts Institute of Technology), Ji Lin (Massachusetts Institute of Technology), Mickael

Seznec (NVIDIA), Hao Wu (NVIDIA), Julien Demouth (NVIDIA), Song Han (Massachusetts Institute of Technology)

Presented by: Aditi Tiwari (aditit5)

tldr

The core of SmoothQuant is a mathematical transformation that redistributes the difficulty of quantization
between activations and weights in large language models (LLMs). The motivation behind this approach
is that activations, especially in LLMs, often contain outliers—values that can be up to 100 times larger
than typical values—making them challenging to quantize directly without losing accuracy. In contrast,
weights are usually more evenly distributed and easier to quantize. SmoothQuant works by shifting some
of this quantization "difficulty" from the activations to the weights, allowing for a more balanced and
effective quantization process

2

Introduction

● Large language models (LLMs) are taking over every
field.

● As the models get larger, serving such models for
inference becomes expensive and challenging!

3

Introduction

4

● Size of LLMs is developing faster than
GPU memory -> creates a big bag
between supply and demand

● Thereby creating a need for quantization
and model compression techniques

● LLMs often come in high precision
formats such as FP16
○ Significant GPU memory requirements
(size and bandwidth)
○ Slow matrix multiplication operations

Quantization

● Lowers the bit width and improves
the efficiency

● Its the process of converting a
high-precision value (e.g., FP16 or
FP32) into a lower-precision
representation (e.g., INT8).

● Reduces memory usage and
computation costs while
maintaining performance, especially
during inference.

5

Post-Training Quantization (PTQ)

● Technique applied after the model is fully trained.
● Doesn’t require retraining, making it efficient for deployment.
● No modifications to training -> easy to implement and wide applicability
● Reduces the cost of LLMs.
● Mitigates memory consumption and reduce computational overhead => higher performance

Trade-offs: Traditional PTQ often leads to accuracy loss, particularly in large models where activation
outliers are prominent.

6

Can we directly apply the techniques we have learnt
to LLMs?

● When model gets larger than 6B parameters, performance degradation is pretty
severe.

● This is because LLMs have outliers in the activation -> difficult to quantize

7

W8A8 quantization has been an industrial standard
for CNNs, but not LLM. Why?

● W8A8 quantization format where both weights and activations are represented using
8-bit integers

● Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B.
Traditional CNN quantization methods will destroy the accuracy.

8

Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

9

Motivation

1. High Memory and Compute Costs for LLMs:
● LLMs like GPT-3, BLOOM, and MT-NLG are highly accurate but resource-intensive.
● Example: GPT-3 with 175B parameters requires at least 350GB memory in FP16,

demanding expensive hardware setups (e.g., 8x48GB A6000 GPUs or 5x80GB A100
GPUs for inference).

2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

10

Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:

● Scaling up model size (e.g., GPT-3 to MT-NLG 530B) leads to an exponential increase
in memory usage and inference time.

● Bottleneck: High costs prevent large models from being used widely in real-time
applications or edge deployments.

3. Need for Efficiency Without Accuracy Loss:

11

Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

● Quantization can reduce memory and computation, but current methods (e.g., W8A8,
ZeroQuant) degrade accuracy.

● For models larger than 6.7B parameters, traditional quantization methods struggle due
to activation outliers.

12

Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

● Quantization can reduce memory and computation, but current methods (e.g., W8A8,
ZeroQuant) degrade accuracy.

● For models larger than 6.7B parameters, traditional quantization methods struggle due
to activation outliers.

SmoothQuant Goal: Achieve efficient 8-bit quantization without compromising the accuracy,
making LLMs more accessible for deployment.

13

Existing Quantization Methods
● W8A8 (Weight and Activation Quantization):

○ Both weights and activations are quantized to 8-bit (INT8).
○ As model size increases (e.g., beyond 6.7B parameters), accuracy degrades significantly because it

cannot handle activation outliers effectively.

● ZeroQuant:
○ Dynamic quantization method that adjusts precision for activations during inference, improving

accuracy.
○ It works for smaller models (delivers good accuracy for GPT-3-350M and GPT-J-6B)
○ ZeroQuant struggles with larger LLMs (can not maintain the accuracy for the large OPT model with

175 billion parameters) due to its inability to handle extreme activation outliers.
○ Uses layer-by-layer knowledge distillation without the original training data

● LLM.int8():
○ Mixed-precision technique that keeps activations in FP16 while quantizing weights to INT8.
○ Increases accuracy by keeping outliers in FP16 and uses INT8 for the other activations
○ This approach is inefficient in terms of hardware utilization, as it requires complex data precision

switching during inference.

14

Challenges with Current Methods

● Difficulty in Activation Quantization:
○ Weights -> easier to quantize -> relatively uniform distribution
○ Activations -> contain outliers -> harder to reduce to INT8 w/o significant accuracy

loss.

● Existing Methods’ Performance on Large Models:
○ Current methods (W8A8 and ZeroQuant) degrade accuracy as model size increases,

particularly for models > 6.7B parameters.

15

Weights and Activations

Weights (W) :
● Learned parameters of the model, fixed during inference
● Easier to quantize -> more evenly distributed without extreme outliers.

16

Weights and Activations

Activations (X):
● Dynamic outputs of each layer during inference
● More challenging to quantize -> outliers.
● Outliers significantly stretch the range of activation values, reducing the effectiveness

of quantization and leading to quantization errors if not handled properly.

17

Quantization Process

Where:
X -> floating-point tensor

x̄ -> quantized counterpart
∆ -> quantization step size
⌈·⌋-> rounding function
N-> Number Of Bits(8 in our case)

18

Quantization Process

Where:
X -> floating-point tensor

x̄ -> quantized counterpart
∆ -> quantization step size
⌈·⌋-> rounding function
N-> Number Of Bits(8inourcase)

19

How to get Δ?
● Dynamic Range Quantization

○ At runtime
○ Use the runtime statistics of activations to
get Δ

● Static Quantization
○ Before runtime
○ Calculate Δ offline with the activations of
some calibration samples

SmoothQuant uses a static approach, where it collects activation statistics
from 512 random sentences sampled from the pre-training dataset (Pile).
These statistics are then used to calculate the per-channel scaling factors
that redistribute the quantization difficulty from activations to weights.

Quantization granularity

● Refers to the level of detail at which quantization is applied to a model's weights or
activations.

20

Quantization granularity

● Per-Tensor Quantization
○ single scaling factor is applied to the entire matrix, meaning all

elements share the same quantization scale.
● Per-Token Quantization
● Per-Channel Quantization
● Group-Wise Quantization

21

close to the original matrix but may have small errors due
to the precision loss in quantization.

Quantization granularity

● Per-Tensor Quantization
● Per-Token Quantization

○ Each row (token) gets its own scaling factor.
● Per-Channel Quantization
● Group-Wise Quantization

22

Quantization granularity

● Per-Tensor Quantization
● Per-Token Quantization
● Per-Channel Quantization

○ Each column (channel) of the matrix gets its own scaling factor
● Group-Wise Quantization

23

captures variability between
columns more effectively,
leading to more accurate
reconstructions.

Quantization granularity

● Per-Tensor Quantization
● Per-Token Quantization
● Per-Channel Quantization
● Group-Wise Quantization

○ Groups of values (e.g., multiple rows or columns) share a scaling
factor.

24

Per-Channel Quantization is Infeasible

Observations:

● Outliers lead to low effective quantization bits
● Outliers exist in a small fraction of channels
● Per-channel quantization seems like a potential solution - to reduce quantization errors as each channel would have its own scaling factor

Issue with Per-Channel Quantization:

● Hardware-accelerated GEMM kernels are optimized for high-throughput, parallel operations using INT8 data with a single scaling factor for the entire
tensor (per-tensor quantization).

● Per-channel quantization -> additional instructions to apply different scaling factors for each channel -> disrupts the vectorized operations of GEMM
kernels -> significant drop in performance.

● GEMM kernels -> do not tolerate the insertion of instructions with lower throughput, making per-channel quantization infeasible due to its negative impact
on inference speed and overall efficiency.

SmoothQuant's Solution:

● Avoids use of per-channel quantization for activations (Key Idea #1)

● instead use mathematically equivalent transformation to redistribute the quantization difficulty to weights, where it can be handled more effectively by
existing hardware.

25

SmoothQuant

What is the outlier here?
- Activation
- Outliers persist in fixed channels

26

SmoothQuant

Goal?
- Smoothing activation to reduce quantization error

27

SmoothQuant

What is the difference b/w the 2 images?
- 1 has lots of outliers.
- 3 channels are much higher in value than the surrounding channels.
- Range is 0-70
- At the same time, 2 is pretty flat

28

SmoothQuant

29

SmoothQuant

30

SmoothQuant

31

Key Idea #2: Migrating the quantization difficulty
Weights are easy to quantize, but activations are hard due to outliers

Alpha (α)

32

● Hyperparameter which controls the extent to which quantization difficulty is shifted
from activations to weights.

● α is b/w 0.4 to 0.6, though larger models or models with more significant activation
outliers may require higher values.

Choosing α

33

Case-by-case decision

If the α is too large, weights will be hard to quantize. If too small, activations will be hard to quantize.

Goal: make activations and weights both easy to quantize.

SmoothQuant Scaling Factor (s)

34

s is calculated based on the maximum values in the activation and weight
channels

Where:
X -> activation values
W -> weight values
α -> hyperparameter (controls extent to which quantization difficulty is shifted
from activations to weights)

SmoothQuant Example

*

35

X-> 2 outlier channels
Obtain s -> divide square root (α = 0.5) of
max of X by max of W
W is flat
X-> -16 and 8 ; 6 and -9
absolute max(-16,8) -> 16 -> square root of 16
= 4
corresponding value of s -> 4

SmoothQuant Example

*

36

S

SmoothQuant Example

*

37

S

SmoothQuant Example

*

38

S

No Free Lunch! What is the new overhead here?

SmoothQuant

39

SmoothQuant Hardware Efficiency

Applying SmoothQuant to transformer blocks
● Linear layers take up most of the parameters and computation
● All compute intensive operators (Linears, BMMs) are qunatized
● Smoothing factor can be fused into previous layers’ parameters offline
● All linear layers are quantized with W8A8, as well as BMM operators in Attention

computation

40

Four Baselines

LLM.int8 keeps outliers in FP16 (large latency overhead). W8A8 is the naive
implementation. Outlier suppression uses token-wise clipping

41

SmoothQuant O1 to O3

Gradually aggressive and efficient (lower latency) quantization levels

42

Evaluation

Three families of LLMs
● OPT (α = 0.5)
● BLOOM (α = 0.5)
● GLM-130B (α is set to 0.75 since its activations are more difficult to quantize)

● Seven zero-shot evaluation tasks e.g. LAMBADA, WikiText
● Focus on relative performance chance before/after quantization

43

OPT-175B Results

 arrow pointing up (↑) means that higher is better for this metric

arrow pointing down (↓) indicates that for the WikiText perplexity score, a lower value is better

44

Results On Different LLMs

* accuracy is not column wise comparable due to different datasets

45

SmoothQuant

SmoothQuant well maintains the accuracy w/o fine-tuning

46

Memory/Latency Savings

● SmoothQuant accelerates the
inference and halves the memory
footprint

● Memory reduced to half
● 8 A100 GPUs reduced to 4 GPUs

(Massive cost reduction)
● Everything is quantized to INT8

rather than FP16 so less
communication and latency is even
faster

● Only compares with LLM.int8()
because it is the only method that
maintains accuracy.

47

Hardware Efficiency

Similar or faster latency with half # GPUs

48

Newer LLaMA Models:

LLaMA (and its successors like Alpaca) are popular open source LLMs, which
introduced SwishGLU, RoPE. Will that impact quantization?
SmoothQuant can losslessly quantize LLaMA families, further lowering hardware barrier

49

Lower perplexity is better

Key Results

● OPT-175B: SmoothQuant-O3 achieved 66.8% accuracy across benchmarks compared to
FP16's 66.9%, with 1.56x speedup and 2x memory reduction.

● GLM-130B: SmoothQuant maintains accuracy similar to FP16 while reducing memory and
speeding up inference.

● MT-NLG 530B: SmoothQuant allows deployment of the massive MT-NLG model on a
single 8-GPU node, achieving 73.1% average accuracy across benchmarks, which was
previously infeasible with standard hardware configurations.

50

SmoothQuant vs Other Methods

51

Overall Results

● SmoothQuant is faster than FP16 baseline under all settings
● LLM.int8() is usually slower than SmoothQuant
● Additionally: SmoothQuant can serve a >500B model within a single node
(8×A100 80GB GPUs) at a negligible accuracy loss

52

My Thoughts

Strengths:

● Innovative outlier handling: SmoothQuant’s method of shifting quantization difficulty from activations to weights is novel
and effective.

● Accuracy & efficiency balance: Maintains accuracy while achieving 1.56x speedup and 2x memory reduction.
● Broad applicability: Tested on diverse models like OPT and MT-NLG, showing flexibility across architectures.
● Practical deployment: Requires no retraining, making it quick to deploy in production environments.

Weaknesses:

● Hyperparameter sensitivity: Requires careful tuning of α\alphaα for different models.
● Pre-computation overhead: Gathering activation statistics adds complexity, especially for dynamic inputs.
● Hardware dependence: Relies on GPUs with INT8 GEMM support, limiting broad hardware applicability.

53

My Thoughts

Future Directions:

● Lower bit-width quantization: Exploring 4-bit quantization could further reduce memory and computation costs.
● FP4 exploration: Mixed precision or FP4 formats could offer better trade-offs between efficiency and precision.
● Cross-layer Quantization Adjustments: SmoothQuant applies the same general principle to all layers, but different layers in large

models may have very different activation distributions and weight characteristics. In future work, we can investigate
layer-specific quantization strategies that adjust the scaling factor α dynamically across layers, based on each layer’s specific
activation patterns and sensitivities.

● Task-specific Quantization: Different tasks (e.g., translation, summarization, question-answering) may have different activation
patterns and outlier characteristics. A one-size-fits-all approach like SmoothQuant may not be optimal across all tasks.Potential
future work could develop task-specific quantization strategies that dynamically adjust α and other parameters depending on the
task being performed. For example, quantization could be fine-tuned for tasks that are more sensitive to outliers or require high
precision.

54

Illinois Blue Photo

