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tldr

The core of SmoothQuant is a mathematical transformation that redistributes the difficulty of quantization 
between activations and weights in large language models (LLMs). The motivation behind this approach 
is that activations, especially in LLMs, often contain outliers—values that can be up to 100 times larger 
than typical values—making them challenging to quantize directly without losing accuracy. In contrast, 
weights are usually more evenly distributed and easier to quantize. SmoothQuant works by shifting some 
of this quantization "difficulty" from the activations to the weights, allowing for a more balanced and 
effective quantization process
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Introduction 

● Large language models (LLMs) are taking over every 
field. 

● As the models get larger, serving such models for 
inference becomes expensive and challenging! 
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Introduction 
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● Size of LLMs is developing faster than 
GPU memory -> creates a big bag 
between supply and demand

● Thereby creating a need for quantization 
and model compression techniques

● LLMs often come in high precision 
formats such as FP16
○ Significant GPU memory requirements 
(size and bandwidth)
○ Slow matrix multiplication operations



Quantization 

● Lowers the bit width and improves 
the efficiency

● Its the process of converting a 
high-precision value (e.g., FP16 or 
FP32) into a lower-precision 
representation (e.g., INT8).

● Reduces memory usage and 
computation costs while 
maintaining performance, especially 
during inference.
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Post-Training Quantization (PTQ) 

● Technique applied after the model is fully trained. 
● Doesn’t require retraining, making it efficient for deployment.
● No modifications to training -> easy to implement and wide applicability
● Reduces the cost of LLMs.
● Mitigates memory consumption and reduce computational overhead => higher performance

Trade-offs: Traditional PTQ often leads to accuracy loss, particularly in large models where activation 
outliers are prominent.
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Can we directly apply the techniques we have learnt 
to LLMs? 

● When model gets larger than 6B parameters, performance degradation is pretty 
severe.

● This is because LLMs have outliers in the activation -> difficult to quantize  
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W8A8 quantization has been an industrial standard 
for CNNs, but not LLM. Why? 

● W8A8 quantization format where both weights and activations are represented using 
8-bit integers

● Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. 
Traditional CNN quantization methods will destroy the accuracy.  
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Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:
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Motivation

1. High Memory and Compute Costs for LLMs:
● LLMs like GPT-3, BLOOM, and MT-NLG are highly accurate but resource-intensive.
● Example: GPT-3 with 175B parameters requires at least 350GB memory in FP16, 

demanding expensive hardware setups (e.g., 8x48GB A6000 GPUs or 5x80GB A100 
GPUs for inference).

2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:
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Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:

● Scaling up model size (e.g., GPT-3 to MT-NLG 530B) leads to an exponential increase 
in memory usage and inference time.

● Bottleneck: High costs prevent large models from being used widely in real-time 
applications or edge deployments.

3. Need for Efficiency Without Accuracy Loss:
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Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

● Quantization can reduce memory and computation, but current methods (e.g., W8A8, 
ZeroQuant) degrade accuracy.

● For models larger than 6.7B parameters, traditional quantization methods struggle due 
to activation outliers.
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Motivation

1. High Memory and Compute Costs for LLMs:
2. Increased Costs as Models Scale:
3. Need for Efficiency Without Accuracy Loss:

● Quantization can reduce memory and computation, but current methods (e.g., W8A8, 
ZeroQuant) degrade accuracy.

● For models larger than 6.7B parameters, traditional quantization methods struggle due 
to activation outliers.

SmoothQuant Goal: Achieve efficient 8-bit quantization without compromising the accuracy, 
making LLMs more accessible for deployment.
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Existing Quantization Methods
● W8A8 (Weight and Activation Quantization):

○ Both weights and activations are quantized to 8-bit (INT8).
○ As model size increases (e.g., beyond 6.7B parameters), accuracy degrades significantly because it 

cannot handle activation outliers effectively.

● ZeroQuant:
○ Dynamic quantization method that adjusts precision for activations during inference, improving 

accuracy.
○ It works for smaller models (delivers good accuracy for GPT-3-350M and GPT-J-6B)
○ ZeroQuant struggles with larger LLMs (can not maintain the accuracy for the large OPT model with 

175 billion parameters) due to its inability to handle extreme activation outliers.
○ Uses layer-by-layer knowledge distillation without the original training data

● LLM.int8():
○ Mixed-precision technique that keeps activations in FP16 while quantizing weights to INT8.
○ Increases accuracy by keeping outliers in FP16 and uses INT8 for the other activations
○ This approach is inefficient in terms of hardware utilization, as it requires complex data precision 

switching during inference.
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Challenges with Current Methods

● Difficulty in Activation Quantization:
○ Weights -> easier to quantize -> relatively uniform distribution
○ Activations -> contain outliers -> harder to reduce to INT8 w/o significant accuracy 

loss.

● Existing Methods’ Performance on Large Models:
○ Current methods (W8A8 and ZeroQuant) degrade accuracy as model size increases, 

particularly for models > 6.7B parameters.

15



Weights and Activations 

Weights (W) : 
● Learned parameters of the model, fixed during inference 
● Easier to quantize -> more evenly distributed without extreme outliers.
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Weights and Activations 

Activations (X):
● Dynamic outputs of each layer during inference
● More challenging to quantize -> outliers.
● Outliers significantly stretch the range of activation values, reducing the effectiveness 

of quantization and leading to quantization errors if not handled properly.
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Quantization Process

Where:
X -> floating-point tensor 

x̄ -> quantized counterpart
∆ -> quantization step size 
⌈·⌋-> rounding function 
N-> Number Of Bits(8 in our case) 
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Quantization Process

Where:
X -> floating-point tensor 

x̄ -> quantized counterpart
∆ -> quantization step size 
⌈·⌋-> rounding function 
N-> Number Of Bits(8inourcase) 
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How to get Δ?
● Dynamic Range Quantization

○ At runtime
○ Use the runtime statistics of activations to 
get Δ

● Static Quantization
○ Before runtime
○ Calculate Δ offline with the activations of 
some calibration samples

SmoothQuant uses a static approach, where it collects activation statistics 
from 512 random sentences sampled from the pre-training dataset (Pile). 
These statistics are then used to calculate the per-channel scaling factors 
that redistribute the quantization difficulty from activations to weights.



Quantization granularity 

● Refers to the level of detail at which quantization is applied to a model's weights or 
activations.
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Quantization granularity 

● Per-Tensor Quantization 
○ single scaling factor is applied to the entire matrix, meaning all 

elements share the same quantization scale.
● Per-Token Quantization
● Per-Channel Quantization
● Group-Wise Quantization
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close to the original matrix but may have small errors due 
to the precision loss in quantization.



Quantization granularity 

● Per-Tensor Quantization 
● Per-Token Quantization

○ Each row (token) gets its own scaling factor.
● Per-Channel Quantization
● Group-Wise Quantization
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Quantization granularity 

● Per-Tensor Quantization 
● Per-Token Quantization
● Per-Channel Quantization

○ Each column (channel) of the matrix gets its own scaling factor
● Group-Wise Quantization
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captures variability between 
columns more effectively, 
leading to more accurate 
reconstructions.



Quantization granularity 

● Per-Tensor Quantization 
● Per-Token Quantization
● Per-Channel Quantization
● Group-Wise Quantization

○ Groups of values (e.g., multiple rows or columns) share a scaling 
factor.
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Per-Channel Quantization is Infeasible

Observations:

● Outliers lead to low effective quantization bits
● Outliers exist in a small fraction of channels
● Per-channel quantization seems like a potential solution - to reduce quantization errors as each channel would have its own scaling factor

Issue with Per-Channel Quantization:

● Hardware-accelerated GEMM kernels are optimized for high-throughput, parallel operations using INT8 data with a single scaling factor for the entire 
tensor (per-tensor quantization). 

● Per-channel quantization -> additional instructions to apply different scaling factors for each channel -> disrupts the vectorized operations of GEMM 
kernels -> significant drop in performance. 

● GEMM kernels ->  do not tolerate the insertion of instructions with lower throughput, making per-channel quantization infeasible due to its negative impact 
on inference speed and overall efficiency.

SmoothQuant's Solution:

● Avoids use of per-channel quantization for activations (Key Idea #1)

● instead use mathematically equivalent transformation to redistribute the quantization difficulty to weights, where it can be handled more effectively by 
existing hardware.
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SmoothQuant

What is the outlier here? 
- Activation 
- Outliers persist in fixed channels 
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SmoothQuant

Goal? 
- Smoothing activation to reduce quantization error 
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SmoothQuant

What is the difference b/w the 2 images? 
- 1 has lots of outliers. 
- 3 channels are much higher in value than the surrounding channels. 
- Range is 0-70 
- At the same time, 2 is pretty flat 
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SmoothQuant
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SmoothQuant
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SmoothQuant
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Key Idea #2: Migrating the quantization difficulty
Weights are easy to quantize, but activations are hard due to outliers



Alpha (α)
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● Hyperparameter which controls the extent to which quantization difficulty is shifted 
from activations to weights. 

● α is b/w 0.4 to 0.6, though larger models or models with more significant activation 
outliers may require higher values.



Choosing α 
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Case-by-case decision

If the α is too large, weights will be hard to quantize. If too small, activations will be hard to quantize.

Goal: make activations and weights both easy to quantize.



SmoothQuant Scaling Factor (s) 
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s is calculated based on the maximum values in the activation and weight 
channels

Where: 
X ->  activation values
W ->  weight values
α -> hyperparameter (controls extent to which quantization difficulty is shifted 
from activations to weights) 



SmoothQuant Example

*
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X-> 2 outlier channels 
Obtain s -> divide square root ( α = 0.5) of 
max of X by max of W 
W is flat 
X-> -16 and 8 ; 6 and -9 
absolute max(-16,8) -> 16 -> square root of 16 
= 4 
corresponding value of s -> 4 



SmoothQuant Example

*
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SmoothQuant Example

*
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SmoothQuant Example

*
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S

No Free Lunch! What is the new overhead here? 



SmoothQuant
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SmoothQuant Hardware Efficiency

Applying SmoothQuant to transformer blocks
● Linear layers take up most of the parameters and computation
● All compute intensive operators (Linears, BMMs) are qunatized
● Smoothing factor can be fused into previous layers’ parameters offline
● All linear layers are quantized with W8A8, as well as BMM operators in Attention 

computation
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Four Baselines

LLM.int8 keeps outliers in FP16 (large latency overhead). W8A8 is the naive
implementation. Outlier suppression uses token-wise clipping
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SmoothQuant O1 to O3

Gradually aggressive and efficient (lower latency) quantization levels
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Evaluation 

Three families of LLMs
● OPT (α = 0.5)
● BLOOM (α = 0.5)
● GLM-130B (α is set to 0.75 since its activations are more difficult to quantize)

● Seven zero-shot evaluation tasks e.g. LAMBADA, WikiText
● Focus on relative performance chance before/after quantization
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OPT-175B Results

 arrow pointing up (↑) means that higher is better for this metric

arrow pointing down (↓) indicates that for the WikiText perplexity score, a lower value is better
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Results On Different LLMs

* accuracy is not column wise comparable due to different datasets 
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SmoothQuant 

SmoothQuant well maintains the accuracy w/o fine-tuning 
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Memory/Latency Savings

● SmoothQuant accelerates the 
inference and halves the memory 
footprint  

● Memory reduced to half 
● 8 A100 GPUs reduced to 4 GPUs 

(Massive cost reduction) 
● Everything is quantized to INT8 

rather than FP16 so less 
communication and latency is even 
faster

● Only compares with LLM.int8() 
because it is the only method that 
maintains accuracy.
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Hardware Efficiency

Similar or faster latency with half # GPUs
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Newer LLaMA Models: 

LLaMA (and its successors like Alpaca) are popular open source LLMs, which 
introduced SwishGLU, RoPE. Will that impact quantization? 
SmoothQuant can losslessly quantize LLaMA families, further lowering hardware barrier 
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Lower perplexity is better



Key Results

● OPT-175B: SmoothQuant-O3 achieved 66.8% accuracy across benchmarks compared to 
FP16's 66.9%, with 1.56x speedup and 2x memory reduction.

● GLM-130B: SmoothQuant maintains accuracy similar to FP16 while reducing memory and 
speeding up inference.

● MT-NLG 530B: SmoothQuant allows deployment of the massive MT-NLG model on a 
single 8-GPU node, achieving 73.1% average accuracy across benchmarks, which was 
previously infeasible with standard hardware configurations.
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SmoothQuant vs Other Methods
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Overall Results

● SmoothQuant is faster than FP16 baseline under all settings
● LLM.int8() is usually slower than SmoothQuant
● Additionally: SmoothQuant can serve a >500B model within a single node
(8×A100 80GB GPUs) at a negligible accuracy loss
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My Thoughts

Strengths:

● Innovative outlier handling: SmoothQuant’s method of shifting quantization difficulty from activations to weights is novel 
and effective.

● Accuracy & efficiency balance: Maintains accuracy while achieving 1.56x speedup and 2x memory reduction.
● Broad applicability: Tested on diverse models like OPT and MT-NLG, showing flexibility across architectures.
● Practical deployment: Requires no retraining, making it quick to deploy in production environments.

Weaknesses:

● Hyperparameter sensitivity: Requires careful tuning of α\alphaα for different models.
● Pre-computation overhead: Gathering activation statistics adds complexity, especially for dynamic inputs.
● Hardware dependence: Relies on GPUs with INT8 GEMM support, limiting broad hardware applicability.
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My Thoughts

Future Directions:

● Lower bit-width quantization: Exploring 4-bit quantization could further reduce memory and computation costs.
● FP4 exploration: Mixed precision or FP4 formats could offer better trade-offs between efficiency and precision.
● Cross-layer Quantization Adjustments: SmoothQuant applies the same general principle to all layers, but different layers in large 

models may have very different activation distributions and weight characteristics. In future work, we can investigate 
layer-specific quantization strategies that adjust the scaling factor  α dynamically across layers, based on each layer’s specific 
activation patterns and sensitivities.

● Task-specific Quantization: Different tasks (e.g., translation, summarization, question-answering) may have different activation 
patterns and outlier characteristics. A one-size-fits-all approach like SmoothQuant may not be optimal across all tasks.Potential 
future work could develop task-specific quantization strategies that dynamically adjust  α and other parameters depending on the 
task being performed. For example, quantization could be fine-tuned for tasks that are more sensitive to outliers or require high 
precision.
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