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Overview

• Background: Parameter-Efficient Fine-Tuning (PEFT)

• Motivation: Why PEFT, LoRA, and QLoRA?

• Contribution: In what ways does QLoRA beat other PEFTs?

• Methodology: How does QLoRA beat other PEFTs?

• Experiments and Results
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Background: PEFT
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• Motivation:
o We need fine-tuning for downstream tasks 

o But fine-tuning the whole model is unrealistic

• Prior Work: 

o Adapter Layer (Houlsby et al., 2019)

o Prefix Tuning (Li and Liang, 2021)

o Prompt Tuning (Lester et al., 2021)

o BitFit (Ben-Zaken et al., 2021)



Background: Adaptor Layer

• Extra Layer per block

• Bottleneck architecture

• Inference latency
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Background: Prefix-Tuning

• Prefix parameters per layer

• "Steering" the model

• Unstable training

• Wasted Seq Length
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Background: Other Directions

• Prompt Tuning
o Pre-append soft prompt params to input

• BitFit
o Tune only the bias

• …

• LoRA
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Background: Low Rank Adaptation (LoRA)

• Motivation:
o Limitations of prior research

o Intrinsic dimensionality (Aghajanyan et al., 2020)

• Contribution:
o LoRA converges to full fine-tuning

o Can choose any subset of weights for tuning

o No inference latency
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Background : LoRA

• Intuition:
o Fine-tuning works b/c low 

"intrinsic dimentionality" 
(Aghajanyan et al., 2020)

o Weight updates can be 
decomposed into two 
matrices with lower ranks

8



Background : LoRA

• Example 1 (d=3, r=2):
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Background : LoRA

• Example 1 (d=3, r=1):
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Background : LoRA

• Implementation:
o B initialized to zero

o A initialized to Gaussian Noise

o r is a hyperparameter

o Update B & A rather than ΔW
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Background : LoRA

• Results
o Update only the attention 

weights

o Reduce VRAM by 2/3

o Reduce checkpoint memory 
by 10,000x (r=4)

o 175B trainable params down 
to 4.7M
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Overview

• Background: Parameter-Efficient Fine-Tuning (PEFT)

• Motivation: Why QLoRA?

• Contribution: In what ways does QLoRA beat other PEFTs?

• Methodology: How does QLoRA beat other PEFTs?

• Experiments and Results
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Motivation for QLoRA

• LoRA is still not enough
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Weight/Param Weight 
Gradient/Param

Optimizer 
State/Param

Adapter 
Weights/Param

Total/Param 70B-Param 
Model

Full FT 16 bits 16 bits 64 bits N/A 96 bits 840 GB

LoRA 16 bits 0.4 bit 0.8 bit 0.4 bits 17.6 bits 154 GB



Contribution of QLoRA

• Reduce weight per param

• Fit the training process within 2x consumer GPUs
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Weight/Param Weight 
Gradient/Param

Optimizer 
State/Param

Adapter 
Weights/Param

Total/Param 70B-Param 
Model

Full FT 16 bits 16 bits 64 bits N/A 96 bits 840 GB

LoRA 16 bits 0.4 bit 0.8 bit 0.4 bits 17.6 bits 154 GB

QLoRA 4 bits 0.4 bit 0.8 bit 0.4 bit 5.6 bits 46 GB



Challenges

• Under-utilization of quantization bins due to outliers

• Large quantization constants still cost some memory

• Sudden memory spikes can cause CUDA out of memory
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Methodology

• 4-bit NormalFloat Quantization
o Deal with weight outliers

• Double Quantization
o Reduces quantization constant memory

• Page Optimizers
o Handle occasional memory spikes
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Methodology: 4-bit NormalFloat Quantization

• Conventional Quantization
o Scale down tensor by absmax (normalization)

o Find the closest value in the target data type

o Example with 2-bit data type:
▪ Input: [10, -3, 5, 4]; target: [-1.0, -0.3, 0.5, 1.0] with index [0, 1,  2, 3]

▪ Normalize: [1.0, -0.3, 0.5, 0.4]

▪ Find the closest value: [1.0, -0.3, 0.5, 0.5] with index [3, 1, 2, 2]

▪ Dequantization: with index [3, 1, 2, 2], find [1.0, -0.3, 0.5, 0.5], then 
scale up to [10, -3, 5, 5]
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Methodology: 4-bit NormalFloat Quantization

• Limitation of 
Conventional 
Quantization
o 4-bit quantization 

of tensor with 
outlier at –10

o Only half of the 
bins are used
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Methodology: 4-bit NormalFloat Quantization

• 4-bit NormalFloat Quantization
o Flatten each tensor and divide into chunk

o Find quantization constant for each chunk

o Quantize each chunk individually 
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Methodology: 4-bit NormalFloat Quantization (cont.)

• An implementation detail
o Use asymmetric quantization for zero padding
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Methodology: Double Quantization

• Memory cost of quantization constant
o FloatPoint-32 with blocksize 64

▪ 64 weight params get quantized together with a FP32 constant

o 32 bits / 64 params = 0.5 bit / param

• Can we further reduce this cost?
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Methodology: Double Quantization (cont.)

• Double quantization
o Quantize the quantization constant of weight params

o FloatPoint-8 with blocksize 256

o 8 / 64 + 32 / (64 * 256) = 0.127 bit / param

• Cost reduce = 0.5 - 0.127 = 0.373 bit /param
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Methodology: Paged Attention

• Black-box NIVIDIA memory feature

• Automatic page-to-page memory transfer between CPU 
and GPU

• Evict optimizer states memory to CPU when CUDA out of 
memory
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Experiments

• Setup:
o LLaMA 7B model

o RougeL: longest 
matching seq

• Important takeaway:
o All layers must be tuned 

to match full fine-tuning 
performance
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Experiments (cont.)

• Ablation Study
o 4-bit Float vs. 4-bit 

NormalFloat vs. 4-bit 
NormalFLoat + Double 
Quantization

• Important takeaway:
o 4-bit NormalFloat is 

both theoretically and 
emprically effective
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Experiments (cont.)

• Multitask Benchmark
o LLaMA models tuned with different adapters

• Important Takeaway
o NFloat64 + DQ can replicate 16-bit fine-tuning performance
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Experiments (cont.)

• Setup:
o MMLU 5-shot

o Multiple instruction 
datasets

• Important takeaway:
o FLAN v2 is the best

o Dataset matters less as 
model size increases
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Experiments (cont.)
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• Chatbot FT

• FLAN v2 is the 
worst

• Guanaco is 
the best



Future Directions

• Fast 4-bit inference

• Better chatbot evaluation
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