
Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model

Parallelism
Nicholas Satchanov

9/11/2024

Background

● Natural language processing uses are attractive
○ Question answering

● NLP field growing quickly due to 2 factors
○ Growth of the Internet -> Increase in availability of training data
○ Better GPUs -> Increase in availability of compute

● Larger models yield higher performance in NLP
● Transformers prove to be the best in NLP

○ Great accuracy
○ Great compute efficiency

Motivation

● Desire for high performing models -> Need models with many parameters
○ Many parameters leads to high memory footprint
○ How to train quickly?

● Current solutions have issues
○ Do not scale well as model size increases
○ Uproots current tools requiring rewriting of compilers

● Want to make training large models more feasible

Existing Work

● Activation checkpointing - Recompute activations in backward pass to avoid storing
○ Reduce memory footprint
○ Utilized in this work between transformers

● ADAM - Training optimizer
○ Requires additional memory per parameter for storing state

● GPipe & Mesh-Tensorflow
○ Frameworks for model parallelism but require model tampering or custom compiler

Key Concepts & Definitions

● Data parallelism vs. model parallelism
○ Data = Split training minibatch across multiple workers

■ Can result in reduced model accuracy or longer convergence time
○ Model = Memory usage and model computation split across multiple workers

■ Alleviate memory pressure
■ Increases amount of parallelism independently of microbatch size

● Model parallelism paradigms
○ Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
○ General distributed tensor computation = Split tensor ops across different devices

● GEMM = General Matrix Multiply
○

Key Concepts & Definitions

● Data parallelism vs. model parallelism
○ Data = Split training minibatch across multiple workers

■ Can result in reduced model accuracy or longer convergence time
○ Model = Memory usage and model computation split across multiple workers

■ Alleviate memory pressure
■ Increases amount of parallelism independently of microbatch size

● Model parallelism paradigms
○ Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
○ General distributed tensor computation = Split tensor ops across different devices

● GEMM = General Matrix Multiply
○

● Transformer layer architecture
○ Self attention block
○ Two-layer, multi layer perceptron (MLP) - Feedforward layer

Design - Their Model Parallelism

● Core idea
○ Keep GPUs compute bound
○ Minimize communication between GPUs

● Parallelism in transformers
○ Parallelize attention and MLP separately

Design - Attention Parallelism

● Multi-attention head inherently parallel
● Compute each attention head on separate GPUs
● Since operations independent, don’t need inter-GPU communication

Design - MLP Parallelism

● 2 ways to parallelize GEMM operations
○ Split A (weight matrix) among rows -> Non-linearity of GeLU requires synchronization
○ Split A among columns -> Can apply GeLU to individual components; no sync needed

● GEMM 1 -> Split among columns
● GEMM 2 -> Split among rows
● With results split across GPUs

Need to reunite with all-reduce op
○ Minimal communication cost

Evaluation Methodology

● Evaluated on real hardware
○ 32 DGX-2H servers (512 Tesla V100 32GB GPUs)
○ NVSwitch - 300GB/sec bandwidth between GPUs in a server
○ InfiniBand - 100GB/sec bandwidth between servers

● Focused on two models
○ BERT
○ GPT2

● Baseline: Single NVIDIA V100 32GB GPU
● 2 improvement methods

○ Model parallelization
○ Model + Data parallelization

Experimental Results

●

Thoughts on Paper

● Strengths
○ Can interleave multiple parallelism methods
○ Good scalability

● Weaknesses
○ Not much focus or acknowledgement of model parallelism weaknesses
○ Padding size of parameters for easy parallelism

■ Model changes required
○ Duplication of weights across GPUs

● Purpose of design choices
○ Inherent parallelism of operations exploited

● Future directions of work
○ Design space exploration to see what joint parallelization methods mesh well

The End

