Megatron-LM: Training Multi-Billion
Parameter Language Models Using Model
Parallelism

Nicholas Satchanov
9/11/2024

Background

e Natural language processing uses are attractive
o Question answering
e NLP field growing quickly due to 2 factors

o Growth of the Internet -> Increase in availability of training data
o Better GPUs -> Increase in availability of compute

e [Larger models yield higher performance in NLP
e Transformers prove to be the best in NLP

o Great accuracy
o QGreat compute efficiency

Motivation

e Desire for high performing models -> Need models with many parameters
o Many parameters leads to high memory footprint
o How to train quickly?

e Current solutions have issues
o Do not scale well as model size increases

o Uproots current tools requiring rewriting of compilers

e Want to make training large models more feasible

Existing Work

e Activation checkpointing - Recompute activations in backward pass to avoid storing

o Reduce memory footprint
o Utilized in this work between transformers

e ADAM - Training optimizer
o Requires additional memory per parameter for storing state

e GPipe & Mesh-Tensorflow

o Frameworks for model parallelism but require model tampering or custom compiler

Key Concepts & Definitions

e Data parallelism vs. model parallelism
o Data = Split training minibatch across multiple workers
m Can result in reduced model accuracy or longer convergence time
o Model = Memory usage and model computation split across multiple workers
m Alleviate memory pressure
m Increases amount of parallelism independently of microbatch size

e Model parallelism paradigms
o Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
o General distributed tensor computation = Split tensor ops across different devices

e GEMM = General Matrix Multiply
O C+« aAB+ B8C

Key Concepts & Definitions

e Data parallelism vs. model parallelism
o Data = Split training minibatch across multiple workers
m Can result in reduced model accuracy or longer convergence time
o Model = Memory usage and model computation split across multiple workers
m Alleviate memory pressure
m Increases amount of parallelism independently of microbatch size

e Model parallelism paradigms

o Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
o General distributed tensor computation = Split tensor ops across different devices

e GEMM = General Matrix Multiply
O C+« aAB+ B8C
e Transformer layer architecture

o Self attention block
o Two-layer, multi layer perceptron (MLP) - Feedforward layer

Design - Their Model Parallelism

e (Coreidea

o Keep GPUs compute bound
o Minimize communication between GPUs

e Parallelism in transformers

o Parallelize attention and MLP separately

Design - Attention Parallelism

e Multi-attention head inherently parallel

e (Compute each attention head on separate GPUs

e Since operations independent, don’t need inter-GPU communication

Y = Self-Attention(X)

= 18 (=)=
L_J dlil‘:ﬂ

—

BEES R
%Cco =51 [@

J

5] Qﬁ

' Q= [, Q]
' split attention heads — ¢ K = [K;, Ko
P V =V, Va]

r"‘- -’.-‘\\
;/ \‘\
£ 2
f =
i d—\h i
‘
i [}
{ [i
| <|x|~Tar,
i Q=
H
|
! X|=
i
{
{
{
{
{
i =
i
{
{
{
1
]
1
)

.
C:
¥

10

)1
=I
:

[}

=1

LS

Z = Dropout(Y B)

1B,

YQBQ i

(b) Self-Attention

Design - MLP Parallelism

e 2 ways to parallelize GEMM operations

o Split A (weight matrix) among rows -> Non-linearity of GeLU requires synchronization
o Split A among columns -> Can apply GeLU to individual components; no sync needed

e GEMM I -> Split among columns

e GEMM 2 -> Split among rows s Y = GeLU(XA) N 7 Z=Dropout(YB)
! A 4
e With results split across GPUs | i o Bl i
- - =i me
Need to reunite with all-reduce op | . (c ﬁ' e o
| — =
© Minimal communication cost i = — — E i dé -
. | —
class f (torch.autograd.Function): E =X = XA, "‘8 :l‘::i" l”'*35"”.‘:’
def forward(ctx, x): ! < ::
return x | o i i . 8
def backward(ctx, gradient): \ A=[A,, A J \ B= [Bl]
all_reduce (gradient) LI - OSSN o 21 __ 0

return gradient (a) MLP

e e D S

Evaluation Methodology

e Evaluated on real hardware
o 32 DGX-2H servers (512 Tesla V100 32GB GPUs)
o NVSwitch - 300GB/sec bandwidth between GPUs in a server
o InfiniBand - 100GB/sec bandwidth between servers

e Focused on two models

o BERT
o GPT2

e Baseline: Single NVIDIA V100 32GB GPU
e 2 improvement methods

o Model parallelization
o Model + Data parallelization

Experimental Results

Number| Number | Model | Model
@ Hidden | Attention of of parallel | +data
Size heads layers | parameters | GPUs | parallel
(billions) GPUs
1536 16 40 1.2 1 64
1920 20 54 2.5 2 128
2304 24 64 4.2 Bl 256
3072 32 72 8.3 8 512
m Model Parallel = Model + Data Parallel
100%
? B0% 9 -
._(_E 0% L ¥y
% aox
; 20%
0%
1 2 - 8 64 128 256 512

Number of GPUS

LM Perplexity

Table 2. Model configurations used for GPT-2.

Hidden Time

Parameter | Layers | Hidden | Attn | Size | Total | per

Count Size |Heads| per |GPUs|Epoch

Head (days)

355M 24 1024 16 64 64 | 0.86

25B 54 1920 20 96 128 | 2.27

8.3B 72 3072 24 128 | 512 | 2.10
24

- 355M -258 - 8.3B

22
20
@
16
T
12
1
8

50 100 150 200 250 300

Iterations (thousands)

Thoughts on Paper

e Strengths
o Can interleave multiple parallelism methods
o Good scalability
e Weaknesses
o Not much focus or acknowledgement of model parallelism weaknesses
o Padding size of parameters for easy parallelism
m Model changes required
o Duplication of weights across GPUs
e Purpose of design choices
o Inherent parallelism of operations exploited
e Future directions of work

o Design space exploration to see what joint parallelization methods mesh well

The End

