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Background

e Natural language processing uses are attractive
o Question answering
e NLP field growing quickly due to 2 factors

o  Growth of the Internet -> Increase in availability of training data
o  Better GPUs -> Increase in availability of compute

e [Larger models yield higher performance in NLP
e Transformers prove to be the best in NLP

o  Great accuracy
o  QGreat compute efficiency



Motivation

e Desire for high performing models -> Need models with many parameters
o  Many parameters leads to high memory footprint
o How to train quickly?

e Current solutions have issues
o Do not scale well as model size increases

o  Uproots current tools requiring rewriting of compilers

e Want to make training large models more feasible



Existing Work

e Activation checkpointing - Recompute activations in backward pass to avoid storing

o  Reduce memory footprint
o  Utilized in this work between transformers

e ADAM - Training optimizer
o Requires additional memory per parameter for storing state

e GPipe & Mesh-Tensorflow

o  Frameworks for model parallelism but require model tampering or custom compiler



Key Concepts & Definitions

e Data parallelism vs. model parallelism
o  Data = Split training minibatch across multiple workers
m  Can result in reduced model accuracy or longer convergence time
o  Model = Memory usage and model computation split across multiple workers
m  Alleviate memory pressure
m Increases amount of parallelism independently of microbatch size

e Model parallelism paradigms
o Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
o General distributed tensor computation = Split tensor ops across different devices

e GEMM = General Matrix Multiply
O C+« aAB+ B8C
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e Transformer layer architecture

o  Self attention block
o  Two-layer, multi layer perceptron (MLP) - Feedforward layer



Design - Their Model Parallelism

e (Coreidea

o  Keep GPUs compute bound
o  Minimize communication between GPUs

e Parallelism in transformers

o  Parallelize attention and MLP separately



Design - Attention Parallelism

e Multi-attention head inherently parallel

e (Compute each attention head on separate GPUs

e Since operations independent, don’t need inter-GPU communication

Y = Self-Attention(X)
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Design - MLP Parallelism

e 2 ways to parallelize GEMM operations

o  Split A (weight matrix) among rows -> Non-linearity of GeLU requires synchronization
o  Split A among columns -> Can apply GeLU to individual components; no sync needed

e GEMM I -> Split among columns

e GEMM 2 -> Split among rows s Y = GeLU(XA) N 7 Z=Dropout(YB)
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Evaluation Methodology

e Evaluated on real hardware
o 32 DGX-2H servers (512 Tesla V100 32GB GPUs)
o NVSwitch - 300GB/sec bandwidth between GPUs in a server
o InfiniBand - 100GB/sec bandwidth between servers

e Focused on two models

o BERT
o GPT2

e Baseline: Single NVIDIA V100 32GB GPU
e 2 improvement methods

o  Model parallelization
o  Model + Data parallelization



Experimental Results

Number| Number | Model | Model
@ Hidden | Attention of of parallel | +data
Size heads layers | parameters | GPUs | parallel
(billions) GPUs
1536 16 40 1.2 1 64
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Table 2. Model configurations used for GPT-2.

Hidden Time

Parameter | Layers | Hidden | Attn | Size | Total | per

Count Size |Heads| per |GPUs|Epoch

Head (days)

355M 24 1024 16 64 64 | 0.86

25B 54 1920 20 96 128 | 2.27

8.3B 72 3072 24 128 | 512 | 2.10
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Thoughts on Paper

e Strengths
o  Can interleave multiple parallelism methods
o Good scalability
e Weaknesses
o Not much focus or acknowledgement of model parallelism weaknesses
o  Padding size of parameters for easy parallelism
m  Model changes required
o Duplication of weights across GPUs
e Purpose of design choices
o Inherent parallelism of operations exploited
e Future directions of work

o Design space exploration to see what joint parallelization methods mesh well



The End



