# Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Nicholas Satchanov 9/11/2024

# Background

- Natural language processing uses are attractive
  - Question answering
- NLP field growing quickly due to 2 factors
  - Growth of the Internet -> Increase in availability of training data
  - Better GPUs -> Increase in availability of compute
- Larger models yield higher performance in NLP
- Transformers prove to be the best in NLP
  - Great accuracy
  - Great compute efficiency

#### Motivation

- Desire for high performing models -> Need models with many parameters
  - Many parameters leads to high memory footprint
  - How to train quickly?
- Current solutions have issues
  - $\circ$  Do not scale well as model size increases
  - Uproots current tools requiring rewriting of compilers
- Want to make training large models more feasible

# Existing Work

- Activation checkpointing Recompute activations in backward pass to avoid storing
  - Reduce memory footprint
  - Utilized in this work between transformers
- ADAM Training optimizer
  - Requires additional memory per parameter for storing state
- GPipe & Mesh-Tensorflow
  - Frameworks for model parallelism but require model tampering or custom compiler

# Key Concepts & Definitions

- Data parallelism vs. model parallelism
  - Data = Split training minibatch across multiple workers
    - Can result in reduced model accuracy or longer convergence time
  - Model = Memory usage and model computation split across multiple workers
    - Alleviate memory pressure
    - Increases amount of parallelism independently of microbatch size
- Model parallelism paradigms
  - Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
  - General distributed tensor computation = Split tensor ops across different devices
- GEMM = General Matrix Multiply
  - $\circ \quad \boldsymbol{C} \leftarrow \alpha \boldsymbol{A} \boldsymbol{B} + \beta \boldsymbol{C}$

# Key Concepts & Definitions

- Data parallelism vs. model parallelism
  - Data = Split training minibatch across multiple workers
    - Can result in reduced model accuracy or longer convergence time
  - Model = Memory usage and model computation split across multiple workers
    - Alleviate memory pressure
    - Increases amount of parallelism independently of microbatch size
- Model parallelism paradigms
  - Layer-wise pipeline parallelism = Each device performed different computation like pipeline stages
  - General distributed tensor computation = Split tensor ops across different devices
- GEMM = General Matrix Multiply
  - $\circ \quad \boldsymbol{C} \leftarrow \alpha \boldsymbol{A} \boldsymbol{B} + \beta \boldsymbol{C}$
- Transformer layer architecture
  - Self attention block
  - Two-layer, multi layer perceptron (MLP) Feedforward layer

#### Design - Their Model Parallelism

- Core idea
  - Keep GPUs compute bound
  - Minimize communication between GPUs
- Parallelism in transformers
  - Parallelize attention and MLP separately

#### Design - Attention Parallelism

- Multi-attention head inherently parallel
- Compute each attention head on separate GPUs
- Since operations independent, don't need inter-GPU communication



## Design - MLP Parallelism

$$X=[X_1,X_2],\; A=egin{bmatrix} A_1\ A_2 \end{bmatrix}$$

 $A = [A_1, A_2]$ 

2 ways to parallelize GEMM operations

- Split A (weight matrix) among rows -> Non-linearity of GeLU requires synchronization
- Split A among columns -> Can apply GeLU to individual components; no sync needed
- GEMM 1 -> Split among columns
- GEMM 2 -> Split among rows
- With results split across GPUs Need to reunite with all-reduce op
- o Minimal communication cost
  class f(torch.autograd.Function):
   def forward(ctx, x):
   return x
   def backward(ctx, gradient):
   all\_reduce(gradient)

return gradient

 $Y = \operatorname{GeLU}(XA)$   $X \Rightarrow XA_{1} \Rightarrow XA_{1} \Rightarrow Y_{1} \Rightarrow Y_{1}B_{1} \Rightarrow Z_{1} \Rightarrow g \Rightarrow y_{2} \Rightarrow Z_{2} \Rightarrow y_{2} \Rightarrow Z_{2} \Rightarrow y_{2} \Rightarrow Z_{2} \Rightarrow y_{2} \Rightarrow Z_{2} \Rightarrow$ 

# Evaluation Methodology

- Evaluated on real hardware
  - 32 DGX-2H servers (512 Tesla V100 32GB GPUs)
  - NVSwitch 300GB/sec bandwidth between GPUs in a server
  - InfiniBand 100GB/sec bandwidth between servers
- Focused on two models
  - BERT
  - GPT2
- Baseline: Single NVIDIA V100 32GB GPU
- 2 improvement methods
  - Model parallelization
  - Model + Data parallelization

#### **Experimental Results**

| Hidden<br>Size | Attention<br>heads | Number<br>of<br>layers | Number<br>of<br>parameters<br>(billions) | Model<br>parallel<br>GPUs | Model<br>+data<br>parallel<br>GPUs |
|----------------|--------------------|------------------------|------------------------------------------|---------------------------|------------------------------------|
| 1536           | 16                 | 40                     | 1.2                                      | 1                         | 64                                 |
| 1920           | 20                 | 54                     | 2.5                                      | 2                         | 128                                |
| 2304           | 24                 | 64                     | 4.2                                      | 4                         | 256                                |
| 3072           | 32                 | 72                     | 8.3                                      | 8                         | 512                                |



Table 2. Model configurations used for GPT-2.

| Parameter<br>Count | Layers | Hidden<br>Size | Attn<br>Heads | Hidden<br>Size<br>per<br>Head | Total<br>GPUs | Time<br>per<br>Epoch<br>(days) |
|--------------------|--------|----------------|---------------|-------------------------------|---------------|--------------------------------|
| 355M               | 24     | 1024           | 16            | 64                            | 64            | 0.86                           |
| 2.5B               | 54     | 1920           | 20            | 96                            | 128           | 2.27                           |
| 8.3B               | 72     | 3072           | 24            | 128                           | 512           | 2.10                           |



# Thoughts on Paper

- Strengths
  - Can interleave multiple parallelism methods
  - Good scalability
- Weaknesses
  - Not much focus or acknowledgement of model parallelism weaknesses
  - Padding size of parameters for easy parallelism
    - Model changes required
  - Duplication of weights across GPUs
- Purpose of design choices
  - Inherent parallelism of operations exploited
- Future directions of work
  - Design space exploration to see what joint parallelization methods mesh well

# The End