
GPTQ: Comprehensive Technical 
Analysis and Presentation Structure

ICLR 2023

Xiaoke LI (Shock)



Background and Motivation
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Problem Scope

• GPT-3 and other LLMs: Breakthrough performance in language tasks

• Massive computational costs: Hundreds of GPU years for training

• Memory and inference challenges: 175 billion parameters in GPT-3 require over 
326GB of memory (float16)

• Deployment difficulties: Requires multiple GPUs, high latency, and resource-
intensive setups

• The need for efficient model compression without sacrificing performance
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Quantization Landscape

• Pruning: Removes redundant weights (e.g., OBD) but requires retraining

• Knowledge Distillation: Smaller models mimic larger ones, but expensive 
retraining

• Quantization: Reduces bit width of weights and activations

• Quantization-Aware Training (QAT): 
• Higher accuracy but requires additional training
• Incorporates quantization into the training process

• Post-Training Quantization (PTQ): 
• Fast, no retraining, but accuracy drop if poorly implemented
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Quantization Landscape

Post-Training Quantization (PTQ):

• Post-Training Dynamic Quantization 

• does not use calibration datasets,

• directly converting each layer through quantization formulas

• QLoRA

• Post-Training Calibration Quantization 

• requires input of a representative dataset

• adjusting quantized weights based on each layer's input and output

• GPTQ
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Previous Limitations

RTN (Round-to-Nearest): Applied to GPT models, works for 8-bit weights, but 
fails at higher compression rates

Higher compression rates (e.g., 3-bit or 2-bit) lead to significant accuracy loss

Old methods are not scalable for models with hundreds of billions of 
parameters (e.g., W8A8)

High latency: The high communication overhead between GPUs during 
inference creates IO bottleneck
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GPTQ Intro

Efficient Compression:

• GPTQ compresses models with 175 billion parameters in approximately 4 GPU hours, reducing 
bitwidth to 3 or 4 bits per weight with negligible accuracy loss

• More than doubles compression gains compared to prior one-shot quantization methods

• For the first time, GPTQ enables 175-billion-parameter models to be executed on a single GPU 
(NVIDIA A100) for generative inference
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GPTQ Intro

Key ideas:

• Minimizes Squared Error: Uses an approximate second-order information to minimize the 
squared error

• Arbitrary Order Quantization: Apply quantization in any fixed order

• Lazy Batch-Updates: C2C ratio (Compression-to-Computing) low, update all parameters

• Cholesky Reformulation: Handles numerical inaccuracies
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GPTQ Intro

Mathematical Rigor:

• GPTQ is based on a rigorous mathematical framework, originating from the Optimal Brain 
Damage (OBD) algorithm proposed by Yann LeCun in 1990.

• Over time, this was improved through Optimal Brain Surgeon (OBS) , OBC(Optimal Brain 
Compression) and OBQ(Optimal Brain Quantization) methods.

• GPTQ represents an accelerated and optimized version of OBQ, making it more suitable for 
large-scale models like GPT-3.

• OBD -> OBS -> OBC/OBQ -> GPTQ
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Existing Work and Key Concepts 
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OBD (Optimal Brain Damage)

The specific algorithmic process is

1. Build the neural network

2. Train the neural network until the loss function converges

3. Calculate the second order derivatives hkk of each parameter

4. Calculate the significance 𝑠𝑘 = ℎ𝑘𝑘
𝜇𝑘

2

2
 of each parameter 

5. Sort the parameters by significance and remove some low significance parameters. Deleting 
parameters can be thought of as setting them to 0 and freezing them during training.

6. Repeat from step 2

11



OBD (Optimal Brain Damage)
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OBD (Optimal Brain Damage)

Formula Simplification

• The objective function is second-order, so do not consider higher-order terms O(Δw3)

• Assume that the model training has converged sufficiently so that the first-order partial 
derivatives of all parameters are 0

• Assume that after deleting any one parameter, the effect of the other parameters on the 
objective function remains unchanged. That is, the effect of each parameter on the objective 
function is independent. Thus we can also disregard the cross terms: hij=0,∀i,j,i≠j
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OBS (Optimal Brain Surgeon) 

OBD crudely considers only the diagonal elements of the Hessian matrix.

OBS considers independence between parameters does not hold, we still have to consider the 
cross terms

The main process

Find the parameter that has the least impact on the model and setting it to zero

Update all the model parameters to compensate for the impact of the zeroed parameter. 

The process does not require retraining of the model.
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OBC（Optimal Brain Compression）

OBS Complexity O(d ^ 4) = d * d ^3 (Hessian matrix inverse）

 Recalculate the inverse Hessian matrix

 Impossible applied in LLMs

OBC（ExactOBS）

 Assume parameters in same row are correlated, different rows are not correlated

 Avoid use entire Hessian matrix,  d * d size,  d = row parameters located

 Rewrite the cost function:
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OBC（Optimal Brain Compression）
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Hessian matrix no need to be recalculated

Update 𝐻−1

when pruning, we remove the corresponding row and column of 𝐻−1

update the remaining elements using Gaussian elimination



OBQ（Optimal Brain Quantizer ）Follow OBC in same paper
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GPTQ Design 
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GPTQ 

same author as OBC

same algorithm

• Abritrary order

• Lazy Batch-Updates

• Cholesky Reformulation
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GPTQ

• Abritrary order

• not significant result bewteen strict order  or abritrary order

• Eventually minimal

• unquantized weights available to adjust and compensate for the error

• Lazy Batch-Updates

• Cholesky Reformulation
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Content

• Abritrary order

• Lazy Batch-Updates

• read + write the parameter matrix once per update
• The quantization result of the parameter in column i is affected by the 

quantization of the previous i-1 columns, but the quantization result 
of column i does not affect the quantization of the previous 
columns.

• divided into groups of 128 columns
• When a column is quantized, its parameters are updated immediately, 

while later columns record the update and apply it later. Once the group 
is fully quantized, all subsequent parameters are updated together.

• Cholesky Reformulation
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GPTQ
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GPTQ

• Abritrary order

• Lazy Batch-Updates

• Cholesky Reformulation

• block updates can cause 𝐻−1 indefinite, leading to incorrect weight 
updates.

• Add a small constant 𝜆 (1% of the average diagonal value) to the diagonal 
of  H

• Precompute necessary rows of  HFq
−1 using Cholesky kernels
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Evaluation and Results
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Content

At 4-bit good performance

At 3-bit competitive performance

GPTQ quantizes models ranging from 1.7B to 175B parameters in a matter of minutes to hours.
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Content

The baseline model is the unquantized version with full 16-bit precision.

GPTQ is highly effective at both 4-bit and 3-bit precision, particularly with fine-grained grouping in
perplexity

Even at 3-bit, GPTQ with grouping (especially g128) achieves results very close to the baseline.
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Figure3 

GPTQ performs close to the 
FP16 baseline, even at 4-bit 
precision, showing its 
effectiveness.

Table7

Group Sizes (g128, g64, 
g32): As the group size 
decreases (more granular 
grouping), perplexity also 
decreases. This means better 
model performance at the 
cost of smaller group sizes.
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Analysis and Future Directions
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Strengths
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• Efficiency & Scalability: 
 Fast quantization for large models (e.g., 175B parameters) within minutes to hours.
• Competitive Accuracy: 
 Maintains near-baseline performance at 4-bit and strong results at 3-bit, outperforming RTN.
 The use of grouping (e.g., g128, g1024) further improves accuracy
• Versatility: 
 Works well for both vision and language models, compatible with different quantization grids.
• Low Memory Overhead: 
 Enables fitting large models on a single GPU, significantly reducing memory usage.
 Allows very large models (e.g., OPT-175B) to fit on a single GPU



Limitations

• Accuracy Loss at Lower Bits:

  Accuracy drops at 2-bit precision without fine-grained grouping

• Sensitivity to Group Size: 

 Smaller group sizes improve accuracy but increase computation time.

• No Activation Quantization: 

 Currently only quantizes weights, missing further compression from activations.

 SmoothQuantization
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Future Work

Advanced Grouping Strategies:

1. Investigating adaptive or dynamic grouping based on model layers or weights’ importance

2. For instance, different parts of the model could benefit from varying group sizes, rather than applying a fixed 
size across all layers.

Improved Handling of Numerical Instabilities:

1. Developing more robust techniques to mitigate numerical inaccuracies during block-wise updates.

2. Especially for extremely large models, could improve the method’s accuracy when applied to 2-bit or lower 
precision quantization

Application to a Broader Range of Tasks:

1. Explore its effectiveness on a wider range of tasks and architectures 

2. e.g., transformers in reinforcement learning or generative models in image synthesis

Hardware-Specific Optimizations:

 GPTQ could be optimized for custom hardware (e.g., FPGAs or specialized AI accelerators) to maximize its 
benefits in terms of speed and efficiency
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