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The Large Language Model Revolution



What is Language Model?

7’ Thou shalt




Evolution of DNN Models

15,000x increase in 5 years

GPT-31T
1 trillion Larger models = better accuracy
0 Model size is still growing
N Megatron-Turing
» 5308
: Ny
2 Not reached the accuracy limit yet
GPT-3
1758
Transformers BERT ~ GPT-2 GPT-28B  T5 Turing-NLG
65M  340M 158 838  11B 178 More compute-efficient to train larger
— models than smaller ones to same
MID 2018 2019 MID LATE 2020 MID LATE 2022 accuracy
2017 2019 2019 2020 2021
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ialogue/New Search

@ chatGPT

Today ‘ You

| want to start an herb garden. Can | get a list of what | need?

=' Microsoft Bing Q, SEARCH £ cHar Q —

Gardening Tips - B

| am planning a trip for our anniversary in September. What are some places we can go that are within a

Solar Eclipse Explained ChatGPT 3 hour flight from London Heathrow?

Yoga Poses for Beginn... Starting an herb garden is a rewarding endeavor, and it's great that

you're interested in it! Here's a basic list to get you started: Congratulations on your anniversary! & There are many places you can go that are within a 3 hour
flight from London Heathrow. Here are some suggestions based on your preferences and the best
destinations in Europe in September * * €

Cooking Lessons :
1. Selection of Herb Plants or Seeds: Choose herbs that you

commonly use in your cooking or that you're interested in trying.

Yesterday Common choices include basil, parsley, cilantro, thyme, rosemary, « If you like beaches and sunshine, you can fly to Malaga in Spain ' , which has a pleasant climate, a
Mastering Chess Strat... mint, and oregano. Consider starting with plants if you're looking lively culture, and a beautiful coastline. You can enjoy the sandy beaches, the historic monuments,

for a quicker start, or seeds if you're in it for the full experience. and the delicious tapas. Malaga is also a great base to explore other nearby attractions, such as
Daily Question: Expan... 2. Containers or Planting Area: If you're limited on space or just Granada, Seville, and Cordoba.

starting out, containers can be a great choice. Ensure they have If you like mountains and lakes, you can fly to Annecy in France * , which is a charming alpine town
good drainage @ near the Swiss border. Annecy is known as the “Venice of France” because of its canals and bridges.
You can admire the stunning scenery, visit the medieval castle, and try some local cheese and wine.
Previous 7 Days Annecy is also close to Geneva, Chamonix, and Lyon, if you want to see more of the region.

Art History: Time Trav...

If you like art and history, you can fly to Florence in Italy ® , which is the birthplace of the
Renaissance and a UNESCO World Heritage Site. Florence is a treasure trove of artistic and

DIY Projects: Create a... architectural masterpieces, such as the Duomo, the Uffizi Gallery, and the Ponte Vecchio. You can
also explore the Tuscan countryside, taste the famous gelato, and shop for leather goods.

Ask me anything
@ Message ChatGPT...

Daily Trivia Challenge

W Feedback

ChatGPT: Optimizing Language Models for Dialogue
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https://openai.com/blog/chatgpt/

Code Continuation and Generation

Python 3
Get the current value of a Bitcoin in US dollars using the bitcoincharts api

requests
json

():
url =
response = requests.get(url)
data = json.loads(response.text)
data| 1l ]

__name__ == -
(get bitcoin price())

est code and entire function in your editor — Github/OpenAl Codex



https://github.com/features/copilot

Image Generation from Text

TEXT DESCRIPTION DALLEZ2

A bowl| of
soup

that is a portal to another dimension

as digital art

DALL-E: Creating Images from Text - OpenAl



https://openai.com/blog/dall-e/

Multi-Agent LLM Applications

Student Assistant Assistant Retrieval-augmented Retrieval-augmented : (s i
el e @ | User Proxy Assistant 7 ! S~
@B @) Ask ' @ D & Lea) ;
expert : — - gp— ' ALFWorld
L@ E; i [@] : Executor :
:_@_: ____________ | R Assistant ' 2z .
rounding
Expert Agent
A1. Math Problem Solving A2. Retrieval-augmented Chat A3. ALF Chat
Commander @ iy Chess Board
Tl Pt > _ ! Manager L@
. @2 | —— !
&) | .. Bf)
R \ _____ L :e""; ~. @ |
@ @ | (©4) ! (ea):
] __ R Human/Al Chess Human/Al Chess
Writer Safeguard Player A Player B
A4 . Multi-agent Coding A5. Dynamic Group Chat AB. Conversational Chess

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation



https://arxiv.org/pdf/2308.08155

Autonomous Driving

@ Cognitive Memory

@' Text Interface

6 Reasoning Engine

Commonsense Memory Experience Memory =~  Memory Data: _ % Chain-of-Thoughts Reasoning
. i . . | - ot - - Common sense - J
Rule (1): Avoid collisions with other objects Past scenario (1): Environmental info 1, Driving Trajectory 1 - Experience . Notable objects: Truck at (3.04, 8.03)
: Potential effects: Truck is decelerati
Rule (N): Maintain a safe distance to the front Obje“i | Past scenario (N): Environmental info N, Driving Trajectory N | ?g::;’;:::m information: [Eonta e Jrucr Seeerarng
s | - Predictions 1
| - Occupan o
{q_ l - Map i Task Planning
Tool Libr 2
% 0 ary _,I-\_, Ego Stalels } | Driving behavior: change lane to right
R 3 . TS = 5 T s z 7 % | Historical Trajectory Velocity estimation: deceleration
Detection Functions Prediction Functions Occupancy Functions Mapping Functions | | Driving plan:
get_leading object() get_pred_trajs_for_object(i) | get_occ_at loc_time(loc,t) | | get_drivable(loc) | I ‘ change_lane_to_right_with_deceleration
get_objects_in_range(r) get_waypoint(i, t) | collision_check(traj) get_lanes(loc) | . l
t t t t |  Memory Reasoning ! /‘ Motion Planning
@) Neural Modules hr= & & : 17 7| Planned driving tra'jectory:
| Tool Use Planning [ [(0.04, 1.26), .., (0.39,7.39)]
) \‘ _ ) o .“} 5'
v O . \ . . \ < s N !\‘ l l
LY} A (TR |
A} 2 A ! Self-Reflection
s : “ N |'l‘ | c
. Large Language Models l[i(e()—gl:n;;dg)lrale(cé%rg z;f;e;ﬁolhs;(m check:
Detection Module Prediction Module Occupancy Module Mapping Module 0‘04' 1.26 Vi 0‘39’ 6‘21
as an Agent | [(004,1.26), .., (0.39,621)]

I I I I

=
(= =

Actions

Observations

Environmental Update

A Language Agent for Autonomous Driving



https://arxiv.org/pdf/2311.10813.pdf

Transformers for Language Modeling

Output
Probabilities

Feed
Forward

Add & Norm
| Add & Norm g

£00 & Norm Muilti-Head
Feed Attention
Forward 2 ¥ N x
— ]
N Add & Norm
x I
f—>| Add & Norm | Maske
Multi-Head Multi-Head
Attention Attention
t t
S J \_ —)
Positional @_@ 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Attention Is All You Need, NeurlPS 2017

BERT

@ GPT

ENCODER DECODER
ee e L
ENCODER DECODER
ENCODER DECODER

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding, ACL 2019

Language Models are Few-Shot Learners, NeurlPS 2020



LLMSs are Impressively Scaling!

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget
\'?m Line color indicates
Test Loss 10 10 \\ number of parameters
|
10° 106 10°

W\, «—10° Params

_. Compute-efficient
training stops far
short of convergence

109 Params ——

T T T T T T

107 100 10 109 108 103 100
Tokens Processed Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10°
parameters (excluding embeddings).

Scaling Laws for Neural Language Models, OpenAl, 2020



Al Efficiency Challenges

* Too slow to train high-quality models on massive data
* More hardware # higher throughput, bigger model

* Higher throughput # better accuracy, faster
convergence, lower cost

* Better techniques # handy to use

* Slow and expensive to deploy the models



DL System Desired Capabilities (3E)

Efficiency: Efficient use of hardware for high scalability and throughput
Effectiveness: High accuracy and fast convergence, lowering cost

Easy to use: Improve development productivity of model scientists
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ML/DL Training Problem Definition Recap

* Given model f, data set {xi, y,}/-,
* Minimize the loss between predicted labels and true labels:

Min &SI, 10ss(f (x, %)

* Common loss function
* Cross-entropy, MSE (mean squared error)

e Common way to solve the minimization problem

 Stochastic gradient descent (SGD)
* Adaptive learning rates optimizers (e.g., Adam)



Gradient Descent

* Model f, is parameterized by weight w

* n>0is the learning rate

Fort=1toT

1
Aw=nxESl,

Backward pass

S/

V

'

(

lOSS(fW(xi’ yi))

w-=Aw // apply update

End

Forward pass

) // compute derivative and update



Adaptive Learning Rates (Adam)

* Model f, is parameterized by weight w

* n>0is the learning rate

Fort=1toT

AW = n x % YNV (lOSS(fW(xir yi)))

W -=| Aw
End

// apply update
\

vi=Pr*xvi1— (1 —B1) g
st = Baxsi—1 — (1 — P2) x g}

Vi

Aw, = —p—2
Wi nm*gt

g: : Gradient at time t along w’
vy » Exponential Average of gradients along w;
sy : Exponential Average of squares of gradients along w;

B1, B2 : Hyperparameters

Adam: A Method for Stochastic Optimization, 2014




Accelerating Gradient Descent

* Model f, is parameterized by weight w

* n>0is the learning rate

Can we accelerate it?
Fort=1toT /

AW = n x % NV (loss(fw(xi, yi))) // compute derivative and update

w-=Aw // apply update
End



Data Parallelism (DP)

Model Aggregation

Juuud)

Synchronization
mechanism

L0 DD (] ) pee—

DD DD learning algorithms on
= Efj -

single machine
Data allocation

Distributed Systems

Implemented as standard component in DL training
frameworks, such as PyTorch DDP

1. Partition the training data

2. Parallel training on different
machines

3. Synchronize the local
updates

4. Refresh local model with
new parameters, then go to 2

Scaling Distributed Machine Learning with the Parameter Server, 2014
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Distributed Data Parallel Training in GPU Clusters

LI

Intranode Interconnect

Mini-Batch

Forward
Propagation

Backward

Propagation

Average
Gradients

Apply Updates

Updates

Compute
Optimizer
Specific
Updates

Data Parallel Training Loop

it

Intranode Interconnect

A A

Internode Interconnect

!
oLLL

Intranode Interconnect
AN A A

!
Nttt

Intranode Interconnect

AN S

Distributed GPU Cluster 19




Training Efficiency: Breaking the Memory Wall



Large Model Training Challenges

Bert- Turing

Large GPT-2 17.2 NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relative Computation 1x 4.7x 54x 547x
Memory Footprint | 5.12GB | 24GB 275GB 2800GB

Self Attention &
Attention Dropout

*

Layer Norm I

Positiona |
Embedding

+
o]

|
O

_.@

Input Embedding

Input

21




Large Model Training Challenges

Bert- Turing

Large GPT-2 17.2 NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relative Computation 1x 4.7x 54x 547x
Memory Footprint | 5.12GB | 24GB 275GB 2800GB

NVIDIA V100 GPU memory capacity: 16G/32G
NVIDIA A100 GPU memory capacity: 40G/80G

Out of Memory

[ Dropout
I |

| GelU

[ e

:

I Layer Norm
ﬁ
»[ Add

7
MLPAHSH |
|
|
|
]

Attention 1

I Dropout I

|  Attention Output |
I

Self Attention &
Attention Dropout

*

I Layer Norm I

+
o]

Positiona |
Embedding

Input Embedding

Input
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DNN Training Hits the Memory Wall

Al and Memory Wall

Parameter Count (Billion)

=
o
(=
=
o

1000

100

=
=]

0.01

| lILIHIl

Ll

Ll

Transformer Size: 240x/ 2 yrs

Al HW Memory: 2x [ 2 yrs

10TB Baidu RecSys
o

2TB Baidu RecSys

®
GShard

®
GPT-3
o

Transformer size: 240x/ 2 yrs
Al HW memory: 2.5x/ 2 yrs

Microsoft T-NLG

A100-80 (80GB)

*Al and Memory Wall. (This blogpost has been written in... | by Amir Gholami | riselab | Medium

Megatron LM & °
E 00 (32G 3 (32GB g 0
i O Silibiitel ) , A100 (40GB)
i @ P00 (1268) @ TPUV2 (16GB) GPT-
o
| BERT
1 ALBERT
] ° o
| i GPT-1 ELECTRA
| indeption V4 ResNext101 Transformer ®
g o o o
] ResNet50 DenseNet
] ® e ©
| 1 T 1 1 T 1 T ‘ 1 1 ‘ 1 T T | 1 1 T 1
2016 2017 2018 2019 2020 2021
YEAR



https://medium.com/riselab/ai-and-memory-wall-2cb4265cb0b8

Distributed Training Techniques
* Tensor Parallelism

* Pipeline Parallelism

* 3D Parallelism

e 7eRO-Style Data Parallelism



Tensor Parallelism

o . e e e —

Y = GeLU(XA) -
}' — — 0
{ o Bl |
; =X =) XAlmgaﬁﬁ YiB,
§I= - = |
1 i ©O E :
Splice tensors across GPUs | [l=p{x 2 e
+ L Talanet A Supported in:
L C . (a) MLP * DeepSpeed
synchronization primitives I . Megatron-LM
N I ~
(e.g., all-reduce) T
=& 1= g 8| ¢ 1
K= 8 —"’®"‘°—.—T° Y, B, a@z
-, (8] 8] |
=t ) g
~[7] | 15
i {Q = [@1, Q2] 2 A = [32] A
' split attention heads — { K = [K\, 5] R S AT
- =
(b) Self-Attention

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism, 2019 55


https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

Pipeline Parallelism

FD Bu Update
Loss |
_— ~— F. B, Update
Device 3 F. B. F, | N B. Update
I I =3 Time > B, | updme
Device 2 F. B. | .
- 1 (b) Supported in:
Device 1 F" B" Fao| Fs1 | Faz | Faa| Baz | Baz | Bax | Bae Update ) P TorCh
‘ I * DeepSpeed
Fao | Fa1 | Fz22 | Faa Bzs | Bez | B2y | Bzo Update ° _
Bevice 0 F. B. Megatron-LM
: - Fio | Fi1| Fiz | Faa { . Bia B2 Bia Bio Update
\ / Foo | Fo1 | Faz | Foa BUbbl e _ Bos B:: Bos Boo | Update
Gradients | |

* Naive model parallelism leads to severe underutilization

* Gpipe divides batch into micro-batches, enabling different device to work on different
micro-batches, reducing pipeline bubbles and improving utilization

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism,
2019


https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

3D Parallelism

Supported in:
*DeepSpeed
*Megatron-LM

I3]|e1ed eleq Oyaz

~
Pipeline Parallel

DeepSpeed Extreme Scale Model Training For Everyone, 2020
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https://github.com/microsoft/DeepSpeed
https://github.com/NVIDIA/Megatron-LM

/eR0O-Style Data Parallelism

 7ZeRO removes the redundancy across data parallel process
e Partitioning optimizer states, gradients and parameters (3 stages)

Memory lp'(:lz

=/.5B

8Py, gpy, 8PUy.1 Consumed |\ _¢
Baseline Q+2+K)*W¥ | 120GB ,

_ Supported in:
P 2w+ 2w+ 5% | 31468 *DeepSpeed
_ ] *PyTorch
2+ KW
Pos+g W 4+ — 16.6GB
P 2+ 2+ K)+W¥ 1.9GB
0S+g+p Ny
Parameters Gradients Optimizer States

ZeRO: Memory Optimizations Toward Training Trillion Parameter
Models, 2019


https://github.com/microsoft/DeepSpeed

Large Models Need Parallelism

(in billions)

Data Parallel (DP)

Tensor Parallel (TP)

TP + DP

Pipeline Parallel (PP)

Approx. 100

Max Parameter

Compute
Efficiency

Max Parallelism

Usability
(Model Rewrite)

Needs Model Rewrite

Good

Needs Model Rewrite

Needs Model Rewrite

PP + DP

Approx. 100

TP + PP + DP

ZeRO

Needs Model Rewrite




Long Context LLMSs

Foundation Model Context Length

100000

Claude (100K)

75000

50000

GPT-4 (32K)

25000

GPT-4 (8K)
GPT-3 (2K) Codex (2K) PALM (2K) GPT-3.5 (4K)

Y F ot ~

0° . @ - . o i N . X ) . ) )
July 2020 July 2021 January 2022 Dec 2022 January 2023 May 2023 June 2023
Year

Variable Sequence Length Training for Long-Context Large Language
Model, 2023 -0



Long-Context Training Systems

DeepSpeed Ulysses: System Optimizations for Enabling Training
of Extreme Long Sequence Transformer Models [PODC 2024]

-

/

{ —

l — —

| § 30 q [.d] (Local:[N/P, d])

= = = B alltoall comm alltoall comm

| .- 8 e

| - = Y X

: |u¢ T NG (ocal{N/P, o) IN.4(F]

: ) .;: —‘@ “- — :é " ILZI ‘\\ N, W] [N, N]

: Q I [:’od ] ¢ 0] (Local-{d, N/Pf) [ cuphml Cmatmal> - s } [N}P Y
= o < Ldl N [Nd) (Localin/P, ' . N, 4/p] | ocal:[N/P,
35.:» B (= ot IIHI | P = |

THE H R ==R i Gommi>— [] it

(= — Wy \ X KT | K o A

et ! N, d/P; -

: [d, d] Y [N.d] (Local:[N/P, d]) | [ d”/

\ Sequence Parallel s EE—— L
N e e —— Wy v i n |

[d, d]
N: sequence length
d: hidden size A

v

[N,d] {Local:[N/P, d])

he: head count
P: total processor (GPU) count

Reducing Activation Recomputation in Large Transformer esmes P =he=4 i
Models [Arxiv 2022]
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Gradient Checkpointing/Rematerialization

A Possible Allocation Plan

Step 1) Run the forward pass normally

\\ blog.DailyDoseofDS.com

Segment 1 O Segment 2
- B 4
7% @ \] O O
= @ Ly e Sy
.0l 0.0
&/ ‘_,.:'"' & :‘;:\"1 % i > |
" 4 Q i o y O
- 0|: -0 O
4 .. 4 L A X
- Py S Py > &
S 4 -y i A e e R
. . .
. -
- - 2N e 4
A B A jn
O
"m

Step 3.1) Only store the
activations of first layer of
each segment in memory

: Rl V|
Saves approx.

50-60% memory |

Step 3.2) Discard the
activations of other
layers in the segment

Step 4) Recompute

Q using O

ONLY WHEN NEEDED

input
inplace
operayion
', fullc-forward

AY
A

<
sigmoid-forward
fullc-forward

softmax-forward

log-loss

input-grad memory
shaqng

A !
!

fullc-backward k

I/
1

sigmoid-backward /

!
I

fullc-backward !

U

softmax-backward

label

Training Deep Nets with Sublinear Memory Cost, 2016

DTR

Coop

ANINTZNNY 77NN

ﬂ Evict an optimal tensor
ZNNEN

7NN\

ﬂ Evict an optimal tensor

o ANTNTANNY 77NN

Il Sliding window

» ZNNINTZANNNY _ZZANV/NIN

ﬂ Recomputable in-place

o ZARNRNZNNY ANV

ZNNENTZXNNWZZN/NEN

3
(—l— Repeat until enough free memory

PNNINTZNNYY ZZANVNIN

ﬂ Cheap tensor partitioning

N\ 77777

SINNN

‘ [5] “cheap” tensor  [7] “expensive” tensor [ ] unevictable tensor [ ] empty evictions |

Coop: Memory is not a Commodity, 2023
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New Hardware Support

H100 FP16

A100 FP16

TURING TENSOR CORE TURING TENSOR CORE TURING TENSOR CORE

PASCAL

L LL LA AL AL

4
.
[ ¢

it

T

INT 4

T

INT 8

—eLGeee

FP16

AVVVERE Y OOOOOUUUU L
A7 ALY
L 15 S ESERRRRNT11:33 SESERRRNNAN
/ ‘Mo

.....................

Introducing the NVIDIA H100 Tensor Core GPU [2022]

B ARARR AR A TR AR

...............
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Mixed Precision Training

FP8-LM: Training FP8 Large Language Models [Arxiv, 2023]

5.0 T
) F16 ) ' FP32 #0
float2half ngghts T FWD —>F16 Activations \ —— BF16 #1
Activations ——> 4.5 -+ ‘ —— FP8 #2a
PR FP8 #2b
F16 <0 Weights \ — FP8 #3
Activation Grad «<—— BWD-Actv 4.0 1

F16 i
<1—Act|vat|on Grad FP8 #4

P
Weight Grad  F16 BWD-Weight s Activations

Training Loss
w
ul

F16 o=
<——Activation Grad

i/ \‘2\‘ L )
\ i \‘v&:\v’ﬁh‘ ’me, IJ\ A, ng

Al g

Master-Weights (F32) irLWeight Update Jﬂz——v Updated Master-Weights 0 20 40 60 80 100

3.0 -

Billions of Tokens

Figure 8: Training losses of GPT-125M models
with the settings presented in Tab. 6. The loss
curve for FP8 #4 has diverged.

Mixed Precision Training [ICLR, 2018]
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Memory/Storage Hierarchy

Heterogeneous Memory

ZeRO-Infinity: Breaking the GPU Memory Wall for
Extreme Scale Deep Learning [SC, 2021]

activation 16

activation 16

parameter 16 Network
. AllGather ReduceScatter

parameter 16

KN 21—

lZM O oM 1 x data movement} 3
gradient 16 - GPU(l) GPU(3)
. { “ Update Super Node \I
pargeter 3212 " +2m 2 M Pargeter 32 ! paraCm>eter 32 I (1/DP) x data movement }
i i (o) ) (2) . (3)
g R s v - R l"' e EE
1 1
variance 32 variance 32 i varpce 32 h Model States Slow Memory Slow Memory
\ &5 ¥ 4 Layer O ) (CPU + NVMe) (CPU + NVMe)
States

CT
ZeRO-Offload: Democratizing Billion-Scale Model h o
Training [ATC, 2021] |
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Auto-Parallelism for Easy-to-Use

(A8} )~(0]

(a) Computational graph

_________________________________

(c) The space of intra-operator
parallelism (e.g., Tofu [55])

——————————————————————————————

______________________________

(d) The space of inter-operator
parallelism (e.g., DAPPLE [17])

______________________________

(b) Manual plan
(e.g., Megatron-LM [40])

_____________________

______________________________

______________________________

______________________________

_____________________________

______________________________

______________________________

(e) Our hierarchical space

Alpa: Automating Inter- and Intra-Operator Parallelism
for Distributed Deep Learning [OSDI, 2022]

Proteus: Simulating the Performance of Distributed
DNN Training [Arxiv, 2023]

Proteus Compile

Strategy tree (§4)

Cluster
Configuration

DNN model
_________ A
-1 Execution Graph Compiler (§5) |
Distributed Execution Graph
¥

: Hierarchical Topo-Aware
Executor (§6) |

Throughput
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