

CS 598

AI Efficiency: Systems and Algorithms Overview & Key Challenges in Al Model Serving

Minjia Zhang

Computer Science Department

What is Model Serving?

Pre-trained model

Fine-tuned model

Serving Scenario 1: Online ChatBot

Serving Scenario 2: Online Image Generation

2 You

Digital illustration of a beach scene crafted from yarn. The sandy beach is depicted with beige yarn, waves are made of blue and white yarn crashing onto the shore. A yarn sun sets on the horizon, casting a warm glow. Yarn palm trees sway gently, and little yarn seashells dot the shoreline.

Copilot

I'll try to create that.

Al-generated content may be incorrect

Digital illustration of a beach scene crafted from yarn. The sandy ...

Designer Powered by DALL-E 3

Serving Scenario 3: Online Q&A

what are famous quote from shakespeare					Google Q	
Images	News	Shopping	Videos	More	Settings	Tools
oout 7,370,00	0 results (0.8	8 seconds)				
Villiam Shak	espeare / (Quotes				
Be not afraid of hrust upon the To thine own se	greatness: so m. elf be true, an	ome are born g d it must follow	reat, some a	achieve greatn nt the day, thou	ess, and some have gre canst not then be false	eatness to any
The course of t	rue love neve	r did run smoo	th.			

Question and Answer Scenario

- Direct answer not a list of webpages
- Good quality of answer

Feedback

Training -> Inference

Inference Challenges

	Training	VS	Inference	
Runtime	Weeks or months		Milliseconds or seconds	
Challenges	TCO (Cost, Energy)		TCO (Cost, Energy)	

Speed (LLM: token rates)

Model size

- Parameter volume
- LLM: Context length

LLM Autoregressive Generation

5 forward passes

Decoding Strategies

Top-k decoding 1. Consider only the top 3 tokens. 2. Sample from them based on Ignore all others. their likelihood scores. United + Netherlands ≈ 15% United 72% United 12% Netherlands 2.7% Netherlands 18% Czech 1.9% Czech 11% U 1.8% Top-p decoding (Nucleus Sampling) 1. Consider only the top tokens whose 2. Sample from them based on their likelihoods add up to 15%. Ignore all others. likelihood scores.

Top-k & Top-p, Cohere

Serving Challenge: Long Latency

- Long serving latency blocks deployment
- Support advance models while meeting latency SLA and saving cost

DL Scenarios	Original Latency	Latency Target	
Turing Prototype 2	~100ms	< 10ms	
Turing Prototype 3	~107ms	< 10ms	
Deep Query Document Similarity	10~12ms for [query, 1 doc] x 33 docs	< 6ms	
Malta Click Features	10ms for [query, 1 passage] x 150 passages	< 5ms	
Ads seq2seq model for query rewriting	~51ms	< 5ms	

Customized Kernels

DeepSpeed-Inference: enabling efficient inference of transformer models at unprecedented scale, SC 2022

ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs, 2023

Multi-GPU Inference via Partitioned Layouts

AlpaServe: Statistical Multiplexing with Model Parallelism for Deep Learning Serving, OSDI 2023

Efficiently Scaling Transformer Inference, MLSys 2023

Inference Challenge: Limited Parallelism

- Small batch size ⇒ Low data reuse
- Autoregressive generation ⇒ Sequential dependency

Batching Strategies for LLM Inference

Orca: A Distributed Serving System for Transformer-Based Generative Models, OSDI 2022

Inference Challenge: Large Memory Footprint

- Model parameters
 - # Layers
 - # Hidden dim
- KV cache
 - Batch size
 - Sequence length
 - # Layers
 - # Hidden
- Activation and others

OPT-13B on A100 40 GB

Efficient Memory Management for Large Language Model Serving with PagedAttention, by Kwon et al., 2023

FlashAttention

Fast and Memory-Efficient Exact Attention with IO-Awareness, 2023

PagedAttention

Efficient Memory Management for Large Language Model Serving with PagedAttention, 2023

SGLang: Efficient Execution of Structured Language Model Programs, 2024

DL Compilation

Triton: An Intermediate Language and Compiler for Tiled Neural Network Computations, 2019

TVM: An Automated End-to-End Optimizing Compiler for Deep Learning, 2018

Class Related

- Slack Channel Update display name
- Schedule Newly joined students please send papers you are interested in presenting to me and the TA
- Presentation Guidance on what to include (course website)

QA