

CS 598

AI Efficiency: Systems and Algorithms Overview of Efficient and Effective Algorithms

Minjia Zhang

Computer Science Department

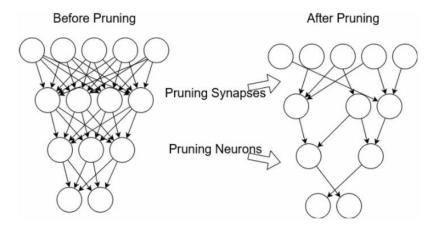
Compression Strategies

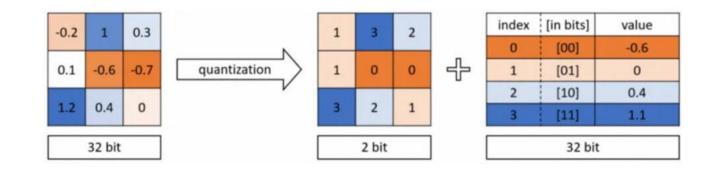
n

 V_r^{T}

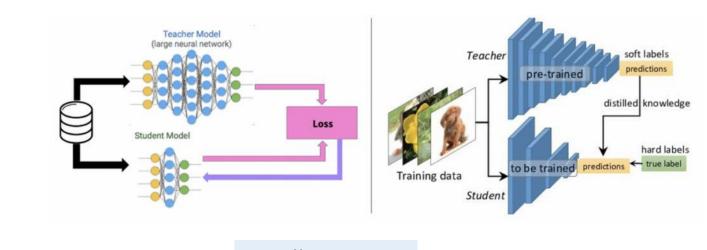
Output

layer





Quantization



Distillation

Quantization m m R m W SVD m r w SVD m r r m r r r r m r r r r m r r r r $r^{(1)}$ r r r r $r^{(1)}$ $r^{(2)}$ $r^{(2)}$ $r^{(3)}$ $r^{(3)}$ $r^{(4)}$

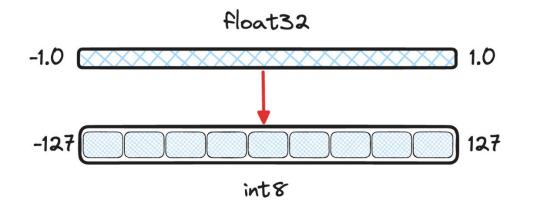
Input layer

Low-rank decomposition

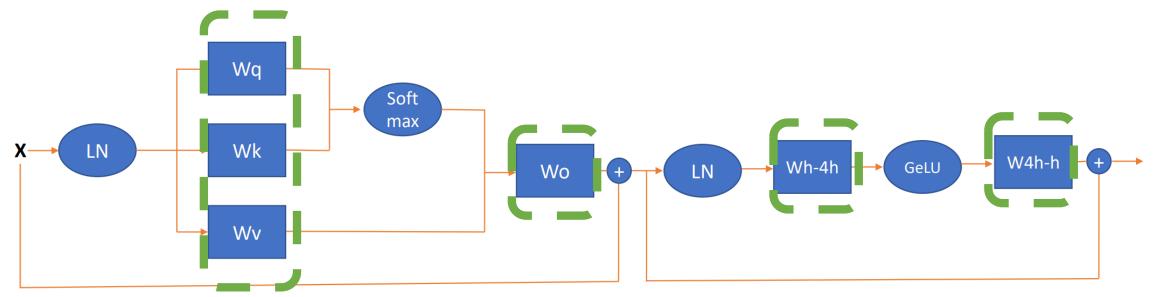
Hidden layers

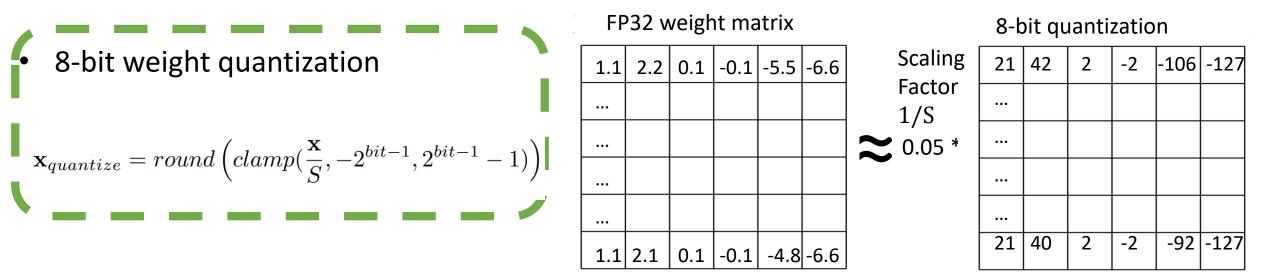
Quantization: Quick Recap

- Reduce the bits per weight, saving memory consumption
- Accelerate inference speed on supporting hardware

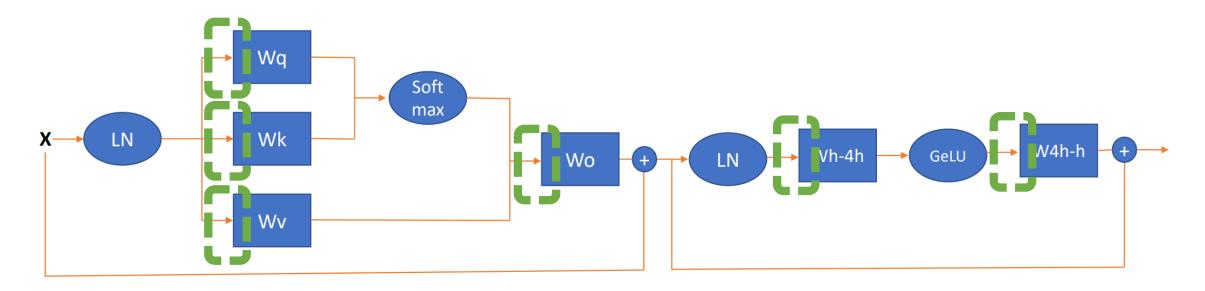


8-bit Weight Quantization



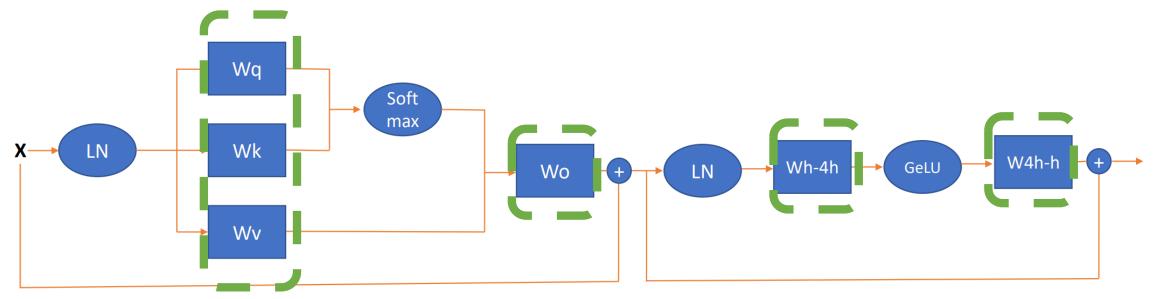


8-bit Activation Quantization

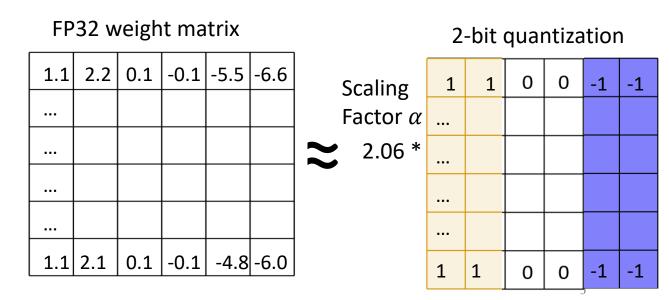


FP32 input matrix 8-bit quantization Scaling 8-bit activation 21 42 2 -2 -106 -127 -0.1 | -5.5 | -6.6 2.2 0.1 1.1 Factor (Input to the linear layer) 1/S... ••• $\mathbf{x}_{quantize} = round\left(clamp(\frac{\mathbf{x}}{S}, -2^{bit-1}, 2^{bit-1} - 1)\right)$ ≥ 0.05* ••• ••• ••• 21 40 2 -2 -92 -127 -0.1 1.1 2.1 0.1 -4.8 -6.6

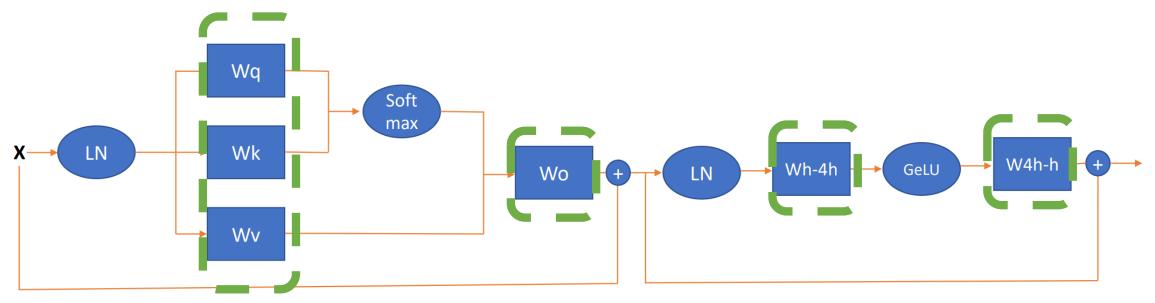
Weight Ternarization



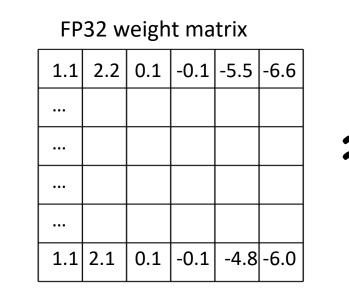
• Ternarization (weight) W: weight matrix, FP32. Q(W): Quantization mapping, 2-bit. With $\alpha = ||W||_1/n$, for some scalar s $Q(W_{ij}) = \begin{cases} \alpha \cdot \operatorname{sign}(W_{ij}) & \operatorname{when} |W_{ij}| > s \\ 0 & \operatorname{when} |W_{ij}| < s \end{cases}$



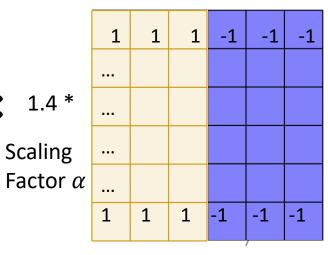
Weight Binarization



• Binarization (weight) W: weight matrix, FP32. Q(W): Quantization mapping, 1-bit. With $\alpha = ||W||_1/n$ $Q(W_{ij}) = \alpha \cdot \operatorname{sign}(W_{ij})$

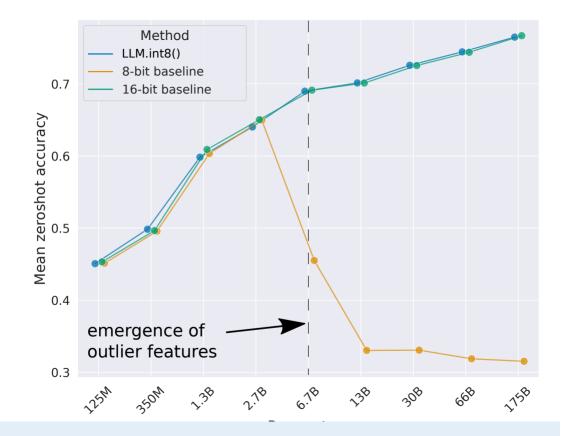


1-bit quantization



Challenges to Quantize LLMs

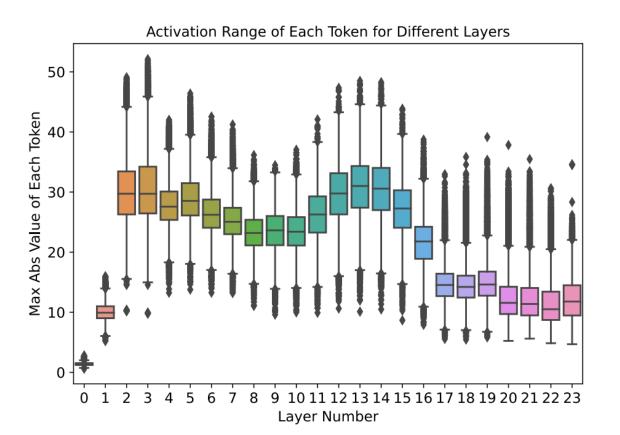
 Standard quantization strategy leads to catastrophic accuracy drop



LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale, 2023

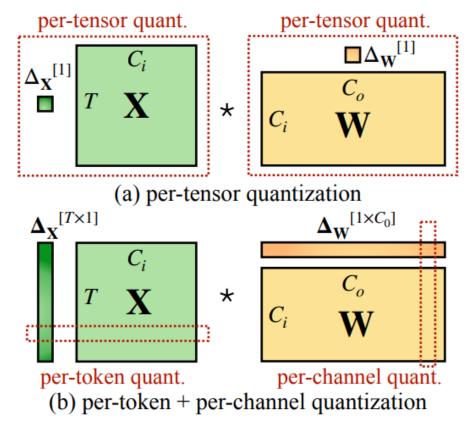
Challenges to Quantize LLMs

• High dynamic ranges of activation, leading to large quantization errors



Fine-grained Quantization

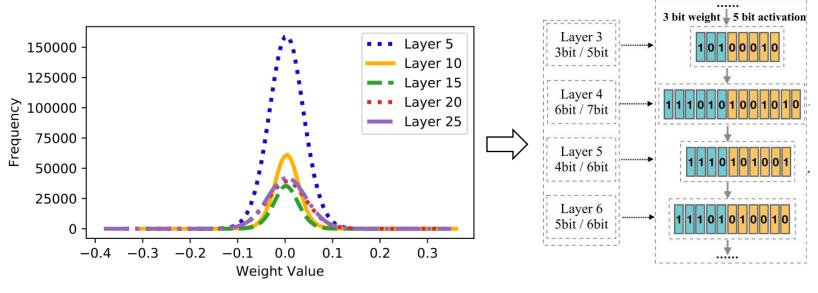
- Per-tensor quantization
 - Low accuracy
 - Fast to quantize/dequantize
- Per-token/channel quantization
 - High accuracy
 - Slower to quantize/dequantize
 - Custom kernels required



ZeroQuant: Efficient and Affordable Post-Training Quantization for Large-Scale Transformers, NeurIPS 2022

Mixed Precision Quantization

- Weights follow Gaussian distribution
- Outliers remain in original form, quantize the rest of the values
- Different bits for different layers

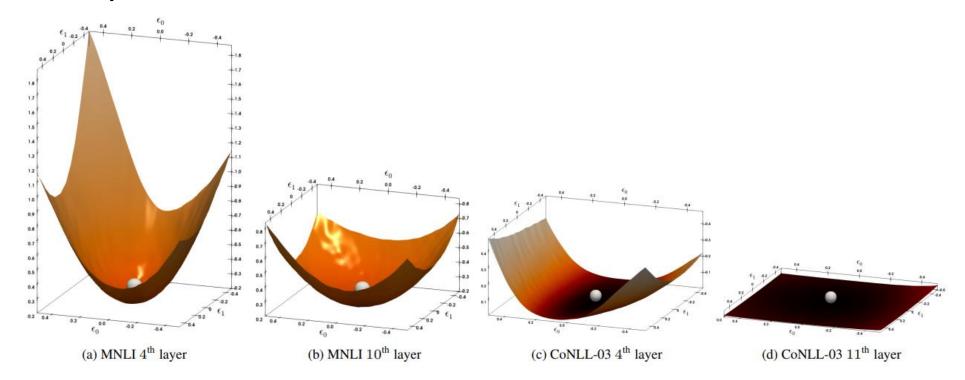


Per-layer weight distribution of BERT model

GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy Efficient Inference, MICRO 2020

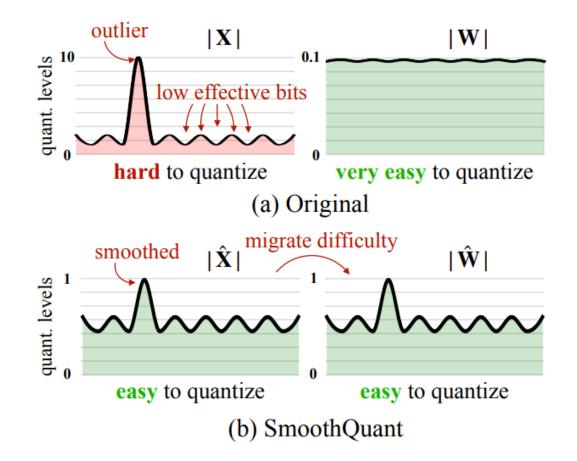
Second Order Information

 Analyze the loss curvature (Hessian matrices) to help identify layer sensitivity



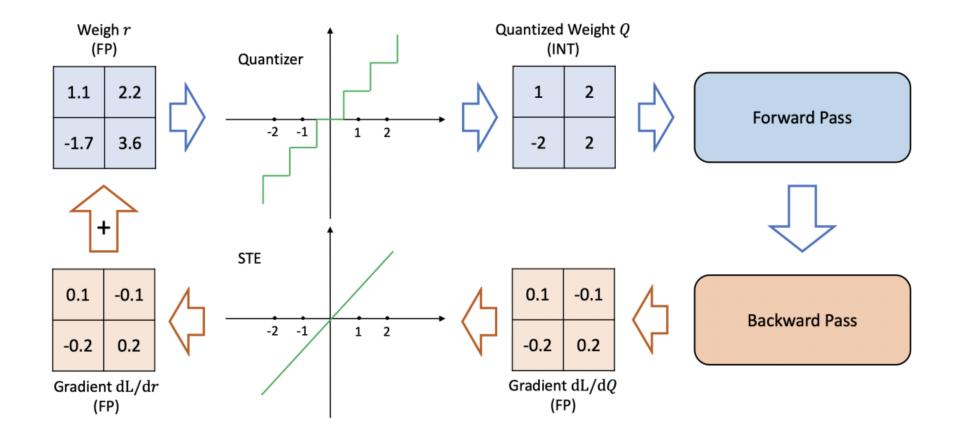
GPTQ: Accurate Post-Training Quantization for Generative Pre-trained Transformers, ICLR 2023

Outlier Smoothing



SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models, ICML 2023

Quantization-Aware Training



EfficientQAT: Efficient Quantization-Aware Training for Large Language Models, 2024

Sparsification

 0.587
 2.56
 0.487
 1.194
 0.348
 3.037
 -3.087
 3.748

 1.894
 3.964
 3.333
 -3.984
 3.771
 3.112
 1.596
 -3.22

 -0.782
 0.995
 -2.856
 -3.018
 0.665
 0.455
 3.531
 0.726

 2.754
 0.277
 2.062
 -0.003
 2.803
 0.958
 2.893
 -2.146

 3.763
 3.149
 3.539
 1.138
 0.917
 -2.179
 0.112
 2.458

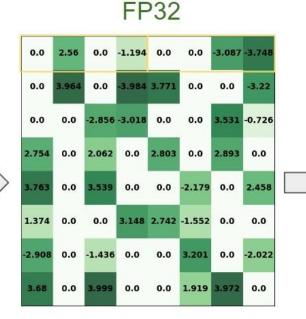
 1.374
 0.494
 0.34
 3.148
 2.742
 1.552
 1.049
 1.442

 -2.908
 -0.928
 1.436
 1.677
 3.201
 0.273
 2.022

 3.68
 1.596
 3.999
 -2.239
 1.112
 1.919
 3.972
 1.469

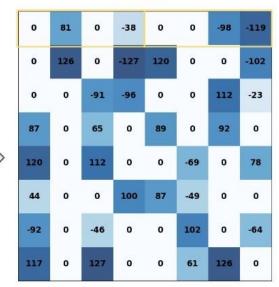
FP32

Dense Matrix



Sparse Matrix

INT8

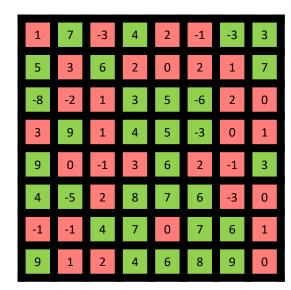


Sparse-Quantized Matrix

Model Pruning

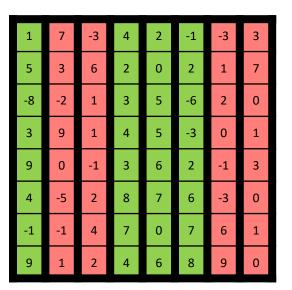
- Unstructured (connection) Sparsity:
- High accuracy
- No performance improvement or performance regression

- N:M Semi-Structured Sparsity:
- High accuracy
- High performance improvement
- Structured Sparsity:
- Large accuracy degradation
- High performance scalability



Unstructured Sparsity

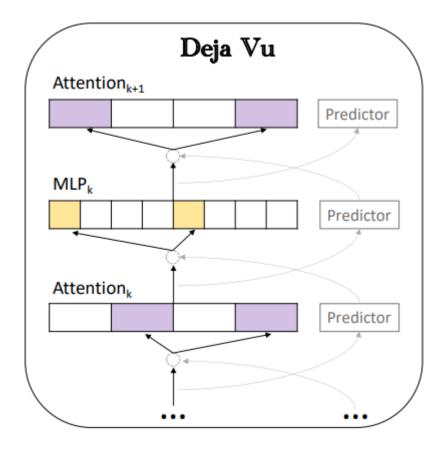
1	7	-3	4	2	-1	-3	3
5	3	6	2	0	2	1	7
-8	-2	1	3	5	-6	2	0
3	9	1	4	5	-3	0	1
9	0	-1	3	6	2	-1	3
4	-5	2	8	7	6	-3	0
-1	-1	4	7	0	7	6	1
9	1	2	4	6	8	9	0



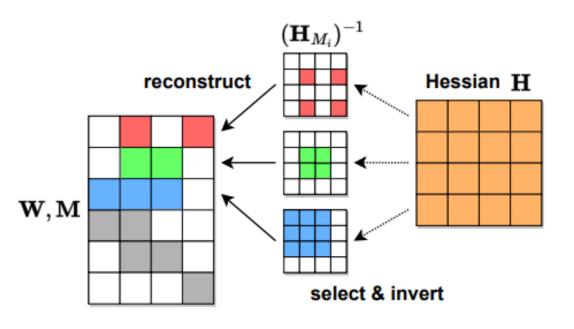
Structured Sparsity (Columnwise Sparsity)

SliceGPT: Compress Large Language Models by Deleting Rows and Columns, ICLR 2024

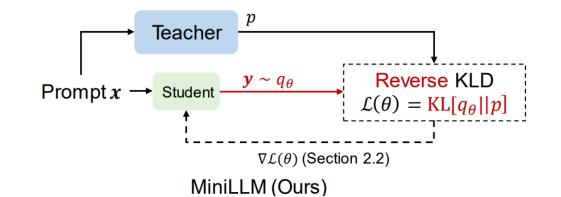
Model Pruning



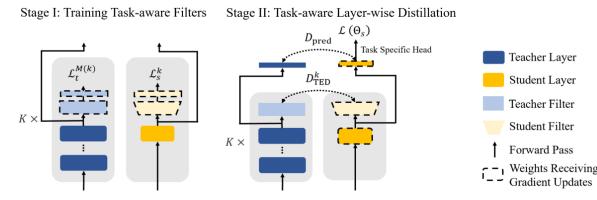
Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time, 2023 SparseGPT: Massive Language Models Can be Accurately Pruned in One-Shot, 2023



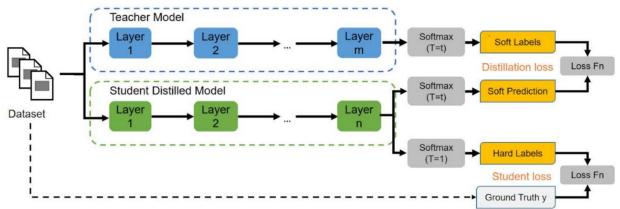
Knowledge Distillation



MiniLLM: Knowledge distillation of large language models, 2024

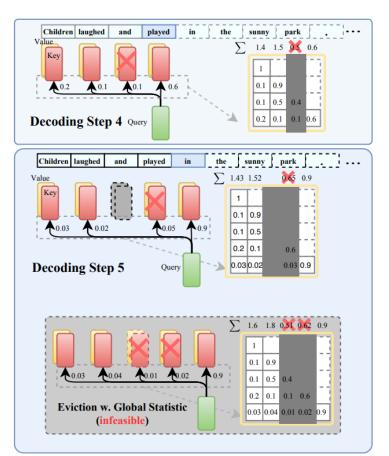


Less is More: Task-aware Layer-wise Distillation for Language Model Compression, 2024

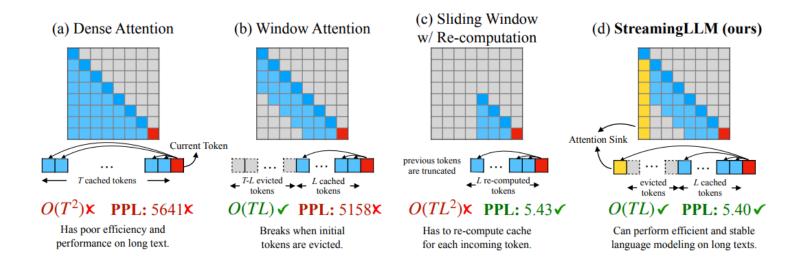


Distilling the Knowledge in a Neural Network , 2015

KV Cache Compression

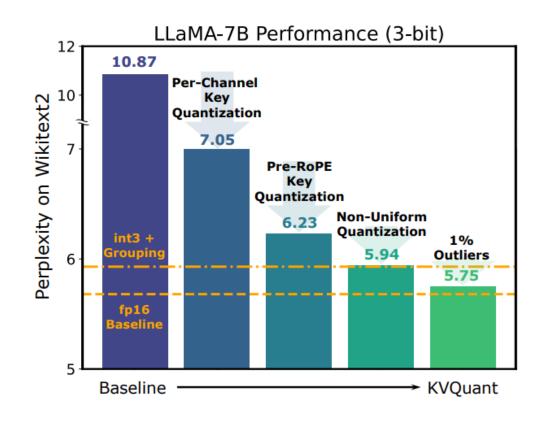


Efficient Streaming Language Models with Attention Sinks, ICL 2024

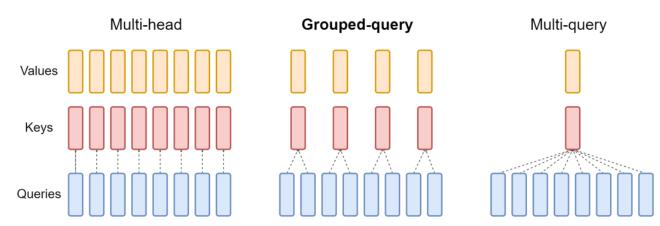


H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models, 2023

KV Cache Compression



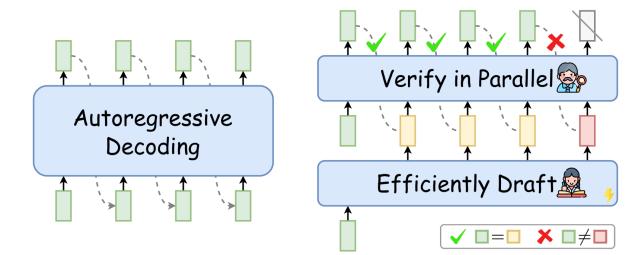
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints, 2023



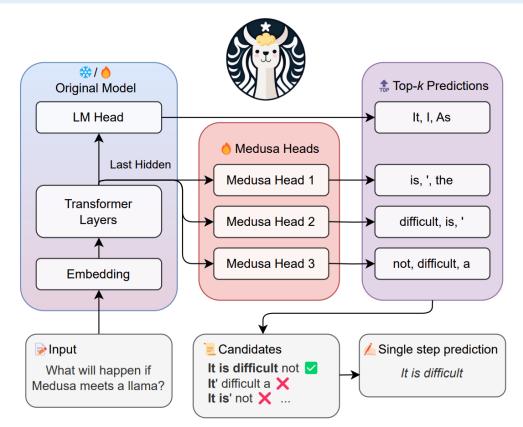
KVQuant: Towards 10 Million Context Length LLM Inference with KV Cache Quantization, 2024

Speculative/Parallel Decoding

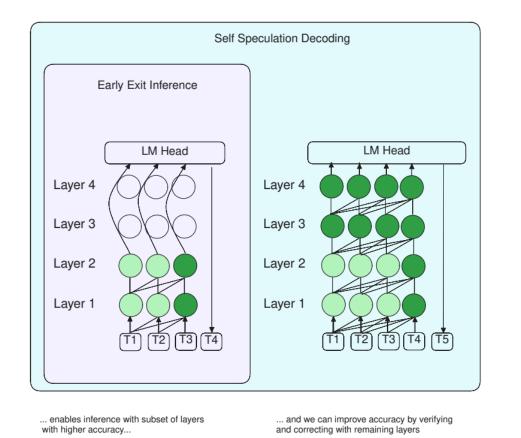
MEDUSA: Simple LLM Inference Acceleration Framework with Multiple, 2024



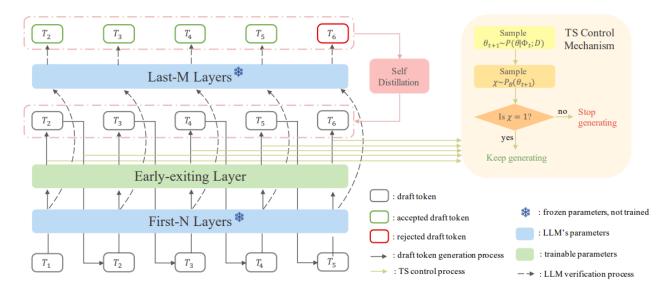
Fast Inference from Transformers via Speculative Decoding, 2023



Early-Exit Inference

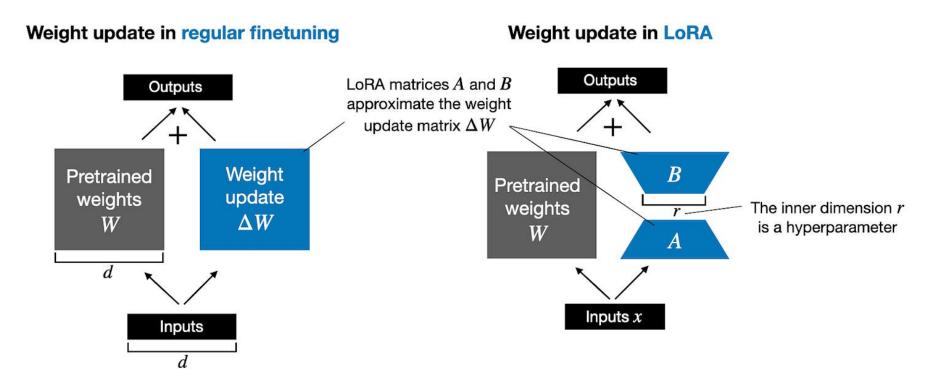


Speculative Decoding via Early-exiting for Faster LLM Inference with Thompson Sampling Control Mechanism, 2024



LayerSkip: Enabling Early Exit Inference and Self-Speculative Decoding, 2024

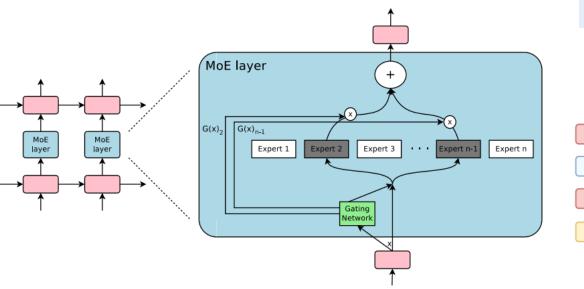
Efficient Fine-Tuning



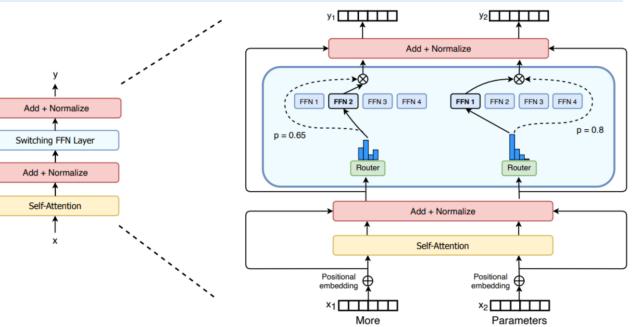
LoRA: Low-Rank Adaptation of Large Language Models, 2021

QLoRA: Efficient Finetuning of Quantized LLMs, 2024

Mixture-of-Expert Models are Sparse and Need Less Compute



Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity, 2021

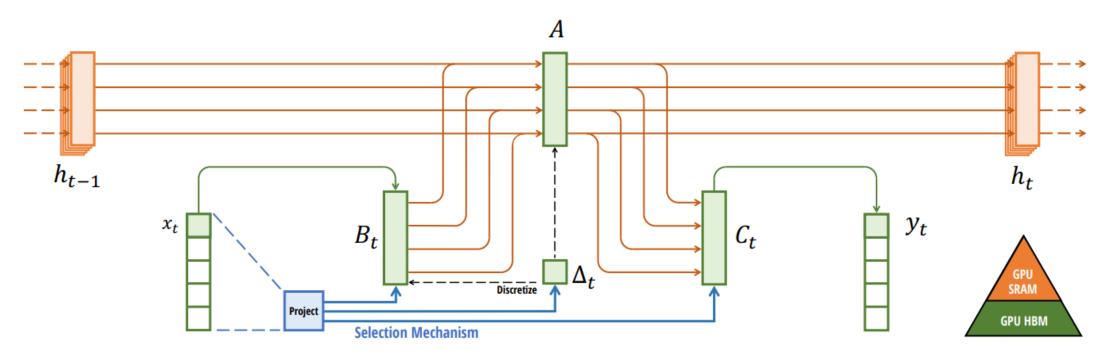


Outrageously Large Neural Networks: The Sparsely-Gated Mixture-of-Experts Layer, 2017

Mamba – Linear Time Sequence Model

Selective State Space Model

with Hardware-aware State Expansion



Mamba: Linear-Time Sequence Modeling with Selective State Spaces, 2024

QA