Efficient Large-Scale Language Model
Training on GPU Clusters Using
Megatron-LM

D. Narayanan et al.

Nvidia, Stanford University, Microsoft Research
SC’'21

Presented by
Qinjun Jiang, Tong Wei

Motivation And Background

e Why do we need large language models?
o Large language models tend to be effective zero- or few-shot learners with high
accuracy
o These large language models have a number of exciting downstream applications
e Why has LLM training efficiency become important?
o Computation at scale has become more available and datasets have become larger
o Number of parameters have grown at an exponential rate

S 108, 2

ga 1071 _AGPT-3 (175B)
©c2 e :

= S 4014 : Turing-NLG (17.2B)
§=§ ¢ Megatron-LM (8.3B)

S8 10 a2 GPT-2(1.5B)

3E) BERT-L (340M)

= -**ELMo (94M)

S 10215 - . '

= 2018 2019 2020 2021

Year

Motivation And Background

e \What are some challenges of training large language models?

©)

O

Parameters of these models can't fit in the memory of even the largest GPU
Large parameter volumes lead to increased compute operations and training times

Bert- Turing

Large GPT-2 | 17.2NLG GPT-3
Parameters 0.32B 1.5B 17.2B 175B
Layers 24 48 78 96
Hidden Dimension 1024 1600 4256 12288
Relative Computation 1x 4.7x 54x 547x
Memory Footprint 5.12GB 24GB 275GB 2800GB

From slide "Al Efficiency: Systems and Algorithms Overview & Key Challenges in LLMs Training Systems”

Existing Work

e Data Parallelism

DP usually has a good scale-out ability, but suffers from two limitations:

Parameter Server W = W - 'IAW

OO00000)
o/ 1]\
0 0

o For a fixed global batch size, the per-GPU batch size becomes
too small beyond a certain point.

Model mr o The maximum number of devices that can be used is determined

Replicas DO DD DD by the batch size.
2 B

Data
Shards

Dean, Jeffrey, et al. “Large Scale Distributed Deep Networks.” NIPS. 2012.

Existing Work

e Tensor Model Parallelism - Megatron-LM
o Split tensor across GPUs.
o Inter-GPUs links works well for models inside one server
e Problems when need to split models across multiple servers:

o The all-reduce communication can’t go through NVlinks
o High model parallelism can create small matrix multiplications, reducing GPU utilization

Y = GeLU(XA)

-=o-=o 1A =

Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism

Existing Work

e Pipeline model parallelism
o Layers of a model are striped over multiple GPUs
o Abatch is divided into microbatches, with pipelined execution across them
o Layer assignment and scheduling strategy cause performance trade-offs
e Overhead of flushing the pipeline

o Has strict semantics and requires optimizer step synchronization and pipeline flushing at the end of
every batch

o As much as 50% of time can be spent flushing the pipeline

Pipeline flush
Device 1 RIPEREERA 1123|4567 |8 ERMAPAIIEL
Device 2 EIEEREEERA: 2(3|a|5]6|7]|8 9 10111213141516
Device 3 12345678 3/4|5|6]7 910111213141516 E
Device 4 123456738R 45678 910111213141515“@

Time —— Devices idle

I Forward Pass [] Backward Pass

Contributions - Interleaved stage scheduling for PP

. . . Notation:
Three possible ways of scheduling forward and backward: {p e bubble(t_pb)\

m = #microbatches(m)

e Default schedule (GPipe to PipeDream-Flush): P = Pipeline stages(p)
tid = Ideal time per iteration(t_id)
Gpipe: tf = time of forward
\tb = time of backward /
Device 1 11/21|131141:5/|6/ /7.8 1 2 3 4 5 3 9 10111213141516
Device 2 1 2(311a| 5 6ll7lB 2 (3 |4|5]|6 9 10111213141516
Device 3 12345678 3|4 (5|6]|7 9 10111213141516
Device 4 1234567 8l 4 5 6 | 7 8 9 10111213141516nm
Time —— Devices idle
B Forward Pass [] Backward Pass
tpp=(p—1)- (£ + 1) tpb —1
Bubble time fraction = —— = P
tia = m- (tf -+ tb) tid m

We wantm > p

However, such a large m has a high memory footprint as it requires stashed intermediate activations

Contributions - Interleaved stage scheduling for PP

e Default schedule (GPipe to PipeDream-Flush):

PipeDream-Flush schedule:

Device 1 8 ERDLEERP)

Device 2 9 101112 n n
Device 3 o 1011120 T

Device 4
Time —— | .
O Limits the number of in-flight microbatches.
o In steady states, worker will perform one forward pass followed by one backward pass.
o Only required activations to be stashed for p microbatches, compared to m microbatches for GPipe
o We can have larger m, and will be more memory efficient.

Contributions - Interleaved stage scheduling for PP

e Schedule with Interleaved Stages — attempting to reduce the bubble size

o Each device can perform computation for multiple subsets of layers(model chunk)

] i.e. device 1 had layers 1 — 4, device 2 had layers 5 — 8, and so on at first. After model chunk, device 1 has
layers 1, 2, 9, 10; device 2 has layers 3, 4, 11, 12; and so on.

o Extend the 1F1B schedule.

o If each device has v stages (or model chunks)

-1
o pipeline bubble time thus reduces to ;, ®—-1-(ts+%) and BFT _ (p-1) 1
pb v m v

; 111 RRR 1
Device 1 1234IHHHSG 7I8=H=H=1 Hz 3 567 8 901255534
Device 2 1234IHH 5I6=7=8uﬁ 1 H 273t Al ;HEHE
Device 3 1234IH saanﬂ 825354 gauaa
Device 4 3785 16 2 7 3 8 4 BEAD

Time —

I Forward Pass [| Backward Pass

Dark colors show the first chunk and light colors show the second chunk. The size of the pipeline bubble is smaller (the pipeline flush happens sooner in the
interleaved timeline).

Scatter/gather communication optimization

e Scatter/gather optimization as an extension to the Megatron-LM

o This reduced pipeline bubble size does not come for free

o The output of each transformer layer is replicated (after g in MLP block)
o They are sending and receiving the exact same set of tensors

O

Split the sending message to equal size of chunk and perform an all-gather on receivers

Y =GelUX4) O Z =Dropout(YB)

()
=X =| XA, =>f£ -:): Y1Bq =>n=>
< o
X ‘:>f 20 T g n:>'§ =|Z
o] =
=X 2| XA, 5|2 -:>=#;> Y,B, =>=>
=

)

-
¥

Infiniband Scatter of All-gather of

1 V=== | 3 —
1 J =
o i
2 = 4 2 ‘—

pr- ~

Performance Analysis of Combined Parallelism

e (p,t,d): Parallelization dimensions, where p is the pipeline-model-parallel

® Tensor and PI pel I ne MOdel Para”el |Sm size, t is the tensor-model-parallel size, and d is the data-parallel size.
O tﬂ’ pipe“ne bubble ﬂ e n: Number of GPUs, satisfying p-t-d =n.

e B: Global batch size.
p - 1 n / t - 1 e b: Microbatch size.
—_— = e m= b%: Number of microbatches per pipeline.
m m
e Communication overhead

o All-reduce communication for tensor model parallelism is expensive!
o Especially when cross servers

Takeaway #1: Use tensor model parallelism within a server and pipeline model
parallelism to scale to multiple servers.

Evaluation - TP vs. PP

e Tensor versus Pipeline Parallelism
o 161-billion param. GPT
o Peak performance achieved whent=p =8
o Need a conjunction of both types of model parallelisms

200 -

—@— Batch size = 32
—4— Batch size =128

Achieved teraFLOP/s
per GPU
=
CID o

O T T T T T
(2, 32) (4, 16) (8, 8) (16, 4) (32, 2)
(Pipeline-parallel size, Tensor-parallel size)

Performance Analysis of Combined Parallelism

—— n=32,b'=32 —&— n=128,b'=128

Data versus Pipeline Parallelism —— n=32,b'=128 —@— n=128 b'=512
)
N 1,001
p—1 nf/fd-1 n-d =
- = 5 075
m b’/d b’=B/b 2050
= 0.25-
- o
Data versus Tensor Parallelism & 0.001— : . . . ‘
_ o 1 2 4 8 16 32 64
o DPis less communication heavy than TP Data-parallel size (d)

m All-reduce once per batch vs. All-reduce once per microbatch
o Tensor parallelism can lead to hardware underutilization

Takeaway #2: Decide tensor-parallel size and pipeline-parallel size based on the
GPU memory size; data parallelism can be used to scale to more GPUs.

Evaluation - DP vs. Model Parallelism

e Pipeline-parallelism vs. Data-parallelism e Tensor-parallelism vs. Data-parallelism

o 5.9-billion param. GPT o 5.9-billion param. GPT
o Throughput decreases as o Throughput decreases as
pipeline-parallel size increases tensor-parallel size increases
— 2001

—@®— Batch size =32
—0— Batch size = 128
—&— Batch size = 512

—®— Batch size =32

- 1901 —&— Batch size = 512
a

O 1001

)

o

H I
50- ‘H —.

50 [o ——

Achieved teraFLOP/s
per GPU
=)
(@ |

Achieved teraFLOP/s

0 T T T T T
0-— ' ' ' ' 2,32) (4,16) (8, 8) (16,4) (32,2
(2,32) (4,16) (8,8) (16, 4) (32,2) ! ' Nl ' . '
(Pipeline-parallel size, Data-parallel size) (Tensor-parallel size, Data-parallel size)

Limitations of data-parallelism:
1. Memory capacity
2. Scaling limitation proportional to the batch size

3D Parallelism

; DP

Evaluation setup

e Megatron-LM extension

e Selene supercomputer
o Each node has 8 NVIDIA 80-GB A100 GPUs
o Inter-GPU: NVLink and NVSwitch
o Inter-node: eight NVIDIA Mellanox 200Gbps HDR Infiniband HCAs

e Model: GPT

Evaluation - End-to-end Performance

e Superlinear scaling of throughput
o Per-GPU utilization improves as the model get larger
o Communication overhead is not significant

1.7 24 2304 24 1 1 32 512 137 44% 4.4

3.6 32 3072 30 2 1 64 512 138 44% 8.8
7:5 32 4096 36 4 1 128 512 142 46% 18.2
18.4 48 6144 40 8 1 256 1024 135 43% 34.6
39.1 64 8192 48 8 2 512 1536 138 44% 70.8
76.1 80 10240 60 8 4 1024 1792 140 45% 143.8
145.6 96 12288 80 8 8 1536 2304 148 47% 2271
310.1 128 16384 96 8 16 1920 2160 155 50% 297.4
529.6 128 20480 105 8 35 2520 2520 163 52% 410.2
1008.0 160 25600 128 8 64 3072 3072 163 52% 502.0

Evaluation - End-to-end Performance

e Estimated Training Time
o T: number of tokens
P: number of parameters 8TP

O . . .
o 1 number of GPUs End-to-end training time ~ —
' nX
o X:throughput
o E.g.GPT3
T (billion) P (billion) n X (teraFLOPs/s per GPU) | #Days
300 175 1024 140 34 288 years with
asingle V100

1000 450 3072 163 84 NVIDIA GPU

Evaluation - Pipeline Parallelism

e \Weak Scaling - increase the #layers while increasing PP size
e Higher batch size scales better (p-1)/m

200

T

—
o))
o

Achieved teraFLOP/s
per GPU
=
o o)

o

—®— Batch size =8
®— Batch size = 128

1 2 4 8
Pipeline-parallel size

Evaluation - Pipeline Parallelism

e Interleaved schedule with scatter/gather optimization has higher throughput
o The gap closes as the batch size increases
m Bubble size decreases when batch size increases (i.e., more micro-batches)
m Interleaved schedule features more communication cost per sample

—&— Non-interleaved
Interleaved

Achieved teraFLOP/s
per GPU
o
o

12 24 36 48 60
Batch size

Evaluation - Comparison with ZeRO-3

e ZeRO-3: No model parallelism in use

e PTD-P scales more gracefully as the #GPUs increases
o Less cross-node communication

—@-- ZeRO-3,175B —A-- PTD-P,175B
—&— ZeRO0-3,530B —&— PTD-P, 530B

E— — —n

Achieved teraFLOP/s

768 1152 1536 1920
Number of GPUs

Selection of Microbatch size

e Optimal microbatch size is model dependent

o Arithmetic intensity
o Pipeline bubble size

2 1.25-

2 e T ——
S1.00

o

< 0.7571

D 0.50- .

N —®— Batch size =128

€ 0.251 _¢— Batch size = 512

S 0.001— ' ' ' '
s 1 2 4 8 16

Microbatch size

Evaluation - Scatter-gather optimization

e GPT model with 175 billion parameters using 96 A100 GPUs
e Upto 11% in throughput

o Large batch size with interleaved schedules
o Reduce cross-node communication cost

-

| —@— Unoptimized
—&— Scatter/gather optimization

—— —— -@

—
N
a

Achieved teraFLOP/s
per GPU
=
(@] o

(@]
o

12 24 36 48 60
Batch size

Activation Recomputation

How many activation checkpoints should be used?
C - Ainput +//c - Aintermediate > = \/l . Aintermediate/Ainput

In general, checkpoint every 1 or 2 layers is optimal
Evaluated on a GPT model with 145 billion parameters on 128 A100 GPUs, (z,
p) = (8, 16)

—8— Act. recomputation
1 —#— W/o act. recomputation

Throughput
(sequences/second)
(6)]

o

1 2 4 8 16 32 64 128 256
Batch size

Related Work

e Parallelism for large model training
o Variations of pipeline model parallelism
m Token level
m Relaxed semantics
m Asynchronous model updates
o Combined data and model parallelism
m DeepSpeed

e Shared Data Parallelism
e Automatic Partitioning
e HPC for training

Strengths and Weaknesses

3D parallelism is effective at scaling large models to multiple servers

Provides a comprehensive reasoning framework for parameter selection in 3D
parallelism, considering not only p, t, d, and also microbatch size and
activation recomputation

- No enough information on the programming interface to the extension
- How much code refactoring is needed?
- Who is responsible for the refactoring?

Backup slides

Existing Work

e What are some existing techniques and their limitations?
o Data Parallelism
o Tensor Parallelism
m Megatron-LM
o Pipeline Parallelism
m GPipe
m PipeDream-Flush

Contributions

e Tow techniques

o Interleaved stage scheduling for pipeline parallelism
o Scatter-gather communication for tensor parallelism

e Performance modeling of combined pipeline, tensor, and data parallelism
e Implemented Megatron-LM extension

Move the end-to-end evaluation and pipeline parallelism
evaluation up

Performance modeling of combined pipeline, tensor, and
data parallelism

e Tensor and Pipeline Model Parallelism
o The pipeline bubble size in terms of t is: ’% = "/';n‘ !
o As tincreases, the pipeline bubble thus decreases

o Pending

e (p,t,d): Parallelization dimensions, where p is the pipeline-model-parallel
size, t is the tensor-model-parallel size, and d is the data-parallel size.

e n: Number of GPUs, satisfying p-t-d = n.
e B: Global batch size.
e b: Microbatch size.

o m= %: Number of microbatches per pipeline.

Performance modeling of combined pipeline, tensor, and data

parallelism
e Data Parallelism and Pipeline Model Parallelism

o Lett=1 (tensor-model-parallel size)
b’ B

Let m = i——and v
~ (d-b) d b

Then the pipeline bubble size £~ 1_njd=1_n- d_
m b’/d b’
o As d becomes larger, n — d becomes smaller, and thus the pipeline bubble becomes smaller

—8— n=32,b'=32 —A— n=128,b'=128
—0— n=32,b'=128 —&— n=128,b'=512

o
N'1.00+
7
o
5 0.75+
e)
>3
© 0.50+
)

£
T 0.251

g=3

Q- 0.00— : ; : . . .

1 2 4 8 16 32 64
Data-parallel size (d)

Evaluation

e Hardware
o Selene Supercomputer (Todo: draw a tree to show the topology)

e Model: GPT

Computation Optimizations

e Change the data layout
e Fused kernels for a sequence of element-wise operations
e Two custom kernels to enable the fusion of scale, mask, and softmax

