
● The problem the paper is trying to tackle.
● What's the impact of the work, e.g., why is it an important problem to solve?
● The main proposed idea(s).
● A summary of your understanding of different components of the proposed technique,

e.g., the purpose of critical design choices.
● Your perceived strengths and weaknesses of the work, e.g., novelty, significance of

improvements, quality of the evaluation, easy-to-use.
● Is there room for improvement? If so, which directions you may want to explore or ideas

you have for improving the techniques?

The main problem the paper is trying to tackle is the scalability of large model training in more
constrained scenarios (i.e. to people without a large GPU farm). This not only increases
accessibility to training large models, but also increases the possible max size of trainable
models on existing clusters of HW. ZeRO-Offload also aims to be easy to use and requires no
model refactoring, which are points that further impact its usability and accessibility.

The impact of these works is a novel deep learning library called Deepspeed. Deepspeed
provides implementations of model optimization frameworks and strategy (including ZeRO), and
Offload has been implemented in Deepspeed. This easy-to-use Python library allows for
anybody to readily use ZeRO-Offload to train larger models on more restrictive hardware while
also improving throughput over existing strategies.

The main optimization Offload targets is offloading certain computation to the CPU to take
advantage of the compute capabilities while also taking advantage of memory offloading. The
reason why ZeRO is chosen as the backbone of Offload is that, unlike other solutions, ZeRO
allows computation to scale with multiple GPUs using MP and DP. This means that ZeRO can
improve on existing CPU-offloading solutions by allowing multi-GPU scalability.

This involves the creation of a simplified DFG denoting granular computations in order to
partition computation to GPU vs. CPU. The authors find that it is optimal to partition
batch-size-related computation (i.e. forward and backward passes) to the GPUs and
optimization updates to the CPU. Combined with modifications to the optimizer (Adam), such as
CPU optimizations for Adam, as well as smart data-transfer scheduling (i.e. delayed parameter
update), this allows Offload to utilize ZeRO to take advantage of multi-GPU compute and
scalability while also utilizing the CPU in non-bottleneck computation.

Offload is, in my opinion, an extremely novel and important paper with a very good
implementation. It is very usable, requiring little change to a regular PyTorch training codebase,
and also very scalable, taking advantage of both CPU memory, CPU compute, and aggregate
GPU memory. The results show that in many cases, ZeRO-Offload allows for the training of
extremely large models in cases where other methods aren’t as efficient or feasible (due to lack
of sufficient aggregate GPU memory).



However, for larger models, the paper implementation doesn’t scale as well due to the CPU
bottleneck and the lack of parameter partitioning. This has been fixed in subsequent releases
with ZeRO-3 Offload (the parameter partitioning issue), but another downside is that for very
small batch sizes and for larger GPU clusters, L2L and stock ZeRO outperform it, respectively.
This is because L2L bypasses the CPU bottleneck, and ZeRO is able to operate on similar
batch sizes once memory becomes less of a restriction.

Overall, ZeRO-Offload is a great step forward in utilizing the CPU for large model training,
allowing for larger models to be efficiently trained on less hardware.


