Paper review: ZeRO++: Extremely Efficient Collective Communication for Giant Model Training

Yueming Yuan. yy28.

The problem the paper is trying to tackle. The paper aims to reduce the communication overhead in
large-scale model training when using ZeRO, especially to address the low network bandwidth
challenges. Though ZeRO is effective in scaling large language models across multiple GPUs, its
communication overhead might be a bottleneck on clusters with low bandwidth or when batch sizes per
GPU are small. The key problem comes from the high communication volumes in the training process,
including forward and backward all-gather, and the reduce-scatter in gradient average.

The impact of the work. The problem is important because inter-node communication could be the main
bottleneck in training across multiple GPU clusters. As models grow larger, efficiently using distributed
computing resources becomes crucial to maintain training throughput. ZeRO++ is important because it
tackles these communication inefficiencies. Especially, for relatively low-resource senarios including low
bandwidth, ZeRO++ help maintain a similar throughput and accuracy comparing to the high-speed
clusters. By tackling these problems, ZeRO++ help enable faster and more resource-efficient training of
the massive models, which plays an important role in Al research and deployment.

The main proposed idea(s). The paper introduces three key communication volume reduction techniques.

1. Quantized weight communication for ZeRO(qwZ): In the forward pass, parameters are
communicated using INTS8 quantization instead of FP16, to reduce the communication volume.
The blocked quantization is used to maintain accuracy.

2. Hierarchical Weight Partition for ZeRO (hpZ): This trades oftf GPU memory for communication
by keeping a full model copy within each machine, eliminating expensive inter-node all-gather
during the backward pass.

3. Quantized Gradient Communication for ZeRO (qgZ) The reduce-scatter operation is replaced by
an all-to-all implementation with INT4 quantization, which further reduces communication
overhead and does not significantly hurt accuracy.

Understanding of different components of the proposed technique.

1. qwZ: ZeRO partitions the model weights across all the ranks and fetches them before they are
needed. ZeRO++ applies INT8 quantization to model weights during all-gather, reducing
communication volume to half. To maintaining model accuracy, each weight tensor is divided
into smaller chunks, and converted into INT8 by symmetric quantization, using an independent
quantization scaling coefficient.

2. hpZ: For parameters, ZeRO++ keeps a secondary copy across all the devices with a machine for
the backward pass. Instead of requiring all GPUs to communicate with each other across nodes,
they only need to gather the model weights within a node, eliminating the inter-node
communication to ZeRO in this backward all-gather.

3. qgZ: The reduce-scatter operation used in ZeRO is replaced with a hierarchical, all-to-all
quantized gradient communication. The devices first apply quantization on a given tensor, then



conduct all-to-all communication among all the GPUs. Each GPU will dequantize the
corresponding partial tensors and reduce on high-precision values. Since the all-to-all
implementation introduces larger cross-node communication volume, they also apply the
hierarchical all-to-all: first intra-node all-to-all and then followed by inter-node all-to-all.

Perceived strengths and weaknesses of the work.

Strengths:

1.

Novelty: The combination of quantization and hierarchical communication strategies is novel. By
addressing both model weight and gradient communication inefficiencies, ZeRO-++ tackles the
key bottlenecks in distributed model training.

2. Efficiency: ZeRO++ achieves significant reductions in communication volume: from 3M to
0.75M, where M is the model size. They achieve a significant throughput improvement and good
scalability.

3. Usability: ZeRO++ is integrated into the existing DeepSpeed framework, making it easier for
users to apply these optimizations without modifying their model code.

Weaknesses:

1. Memory: The hpZ increases memory usage significantly compared to ZeRO. This may limit the
method in memory-constrained cases.

2. Accuracy: Though the methods they applied target maintaining the model quality, the
introduction of quantization will still cause a reduction in model performance.

3. Evaluation: Though the experiments show strong results up to 384 GPUs, the scalability and
impact of ZeRO++ at even larger scales, where inter-node communication influence is more
significant, is not fully explored.

Room for Improvement.

1. The memory overhead introduced by holding full model copies within nodes could be further
optimized. For example, hybrid strategies that dynamically adjust memory-communication
trade-offs based on available resources could help reduce this overhead.

2. The current approach focuses on block-based quantization to maintain accuracy. It may be worth

exploring other quantization techniques to achieve a better model quality.



