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1 The Problem

The paper addresses fundamental limitations in existing deep learning compilers that prevent achieving peak hard-
ware performance. Current compilers like XLA and TVM operate on scalar programs and struggle to generate
optimal code for parallel architectures. They fail to effectively handle key optimization challenges like memory
coalescing, shared memory usage, and register pressure in GPU programming, leading to suboptimal performance
compared to hand-tuned libraries. This reduces dependence on vendor-provided libraries and allows faster imple-
mentation of novel algorithms. The compiler demonstrates performance matching or exceeding cuBLAS on core
operations while requiring 10-20x less code than equivalent CUDA implementations.
1.1 Strengths

e Reduces implementation complexity while maintaining performance of hand-tuned code

e Program analysis eliminates manual optimization of memory access patterns

e Compiler generates different code paths based on input sizes and hardware capabilities

e Enables rapid implementation of new GPU kernels without CUDA expertise

2 Technical Analysis
2.1 Block-Level IR Design

e The IR operates on blocks of values rather than scalars, using tensors as the basic unit
e Each tensor has an explicit memory layout descriptor specifying:

— Block dimensions and strides
— Padding and alignment requirements

— Memory space allocation (global/shared /register)

e This enables the compiler to reason about memory access patterns and data movement at a higher level

2.2 Automatic Layout Optimization
e The compiler performs analysis to determine optimal data layouts through:
— Access pattern analysis to identify spatial and temporal locality
— Memory hierarchy mapping based on reuse distance
— Padding insertion to avoid bank conflicts

— Layout transformation to enable memory coalescing

e Critical insight: Rather than leaving layout decisions to the programmer, the compiler infers optimal layouts
from computation patterns



2.3 Multi-Level Scheduling

e Computations are scheduled across three levels:

— Grid level: Distribution across thread blocks
— Block level: Assignment to warps and shared memory allocation

— Thread level: Vector instructions and register allocation
e The scheduler uses cost models considering:

— Memory bandwidth requirements

Computation intensity

Register pressure

Shared memory capacity

2.4 Memory Promotion Strategy

e Uses a novel ”"polyhedral-inspired” analysis to:

— Identify data blocks that should be promoted to shared memory
— Determine optimal tile sizes for promoted data

— Schedule load/store operations to hide latency

e Implements automatic double buffering when beneficial

3 Discussion

3.1 Program Analysis Limitations

e Does not address limitations of static analysis for dynamic shapes
e No discussion of compile-time vs runtime decision making
e Missing analysis of when automatic optimization might fail

e Limited exploration of fallback strategies when optimal code generation is not possible

3.2 Memory System Evolution

e No discussion of emerging memory hierarchies (HBM, unified memory)
e Limited analysis of impact of cache hierarchy changes
e Missing exploration of NVLink and multi-GPU scenarios

e No consideration of disaggregated memory systems

3.3 Performance Predictability

e No discussion of how compilation decisions affect performance variability
e No analysis of worst-case performance scenarios
e Lacks analysis of how different hardware configurations impact optimization decisions

e Missing exploration of performance debugging tools when generated code underperforms



