Review of Speculative Execution
	The paper introduces a novel algorithm called speculative decoding to accelerate inference from large transformer models without altering the probability distribution of their outputs. The authors propose a method that leverages more efficient approximation models to generate speculative prefixes for slower target models, enabling parallel computation of multiple tokens. The idea of speculative decoding stems from speculative execution in computer architecture, where the CPU executes additional instructions by predicting the branch a program would take on a loop. This reduces the delay in processing all the instructions one after the other. The primary impact of this work is the significant acceleration of inference from large Transformer models. The authors demonstrate a 2X-3X speedup compared to the standard T5X implementation when applied to T5-XXL, without any changes to the model's outputs.

The core design idea of speculative decoding is to leverage easier subtasks within hard language-modeling tasks that can be approximated well by more efficient models. That is, use a smaller model to do the easier subtask and ask the larger model to verify whether the answer to the easier subtask is correct. This approach generalizes speculative execution to the stochastic setting, allowing for faster sampling from autoregressive models without requiring retraining or architectural changes. The paper proposes a novel sampling method to maximize the probability of speculative tasks being accepted by the target model. The approximate model samples a sequence of candidate tokens, while the target model verifies the samples parallelly. If the target model accepts the speculative prefix, multiple tokens can be generated in a single step, significantly reducing inference time. The sampling method ensures that the probability distribution of generating the output sequence tokens do not change. It is designed to maximize the acceptance probability of speculative predictions while maintaining the exact output distribution of the main model. It involves a careful adjustment of probabilities based on the outputs of both the approximation and main models

Strengths
1. Achieves 2x-3x speedup without changing models
2. Applicable to existing models without retraining
3. Generalizes to various sampling methods
Weakness
1. Requires an additional approximation model, thus requiring additional memory usage
2. Computation also increases due to the addition of the approximate model
3. Performance gain depends on the quality of the approximation model 
Improvements:
1. A hierarchical version of the algorithm where the inference of the approximation model itself can be enhanced by an even faster model, which would allow a stronger approximation model to be used
2. How would speculative decoding work for diffusion models which also has autoregressive inference algorithm
