
‭Name:‬‭Jiankun Wang‬
‭Email:‬‭jiankun7@illinois.edu‬

‭Paper title:‬‭SGLang: Efficient Execution of Structured Language Model Programs‬

‭1. The problem the paper is trying to tackle.‬
‭The paper wants to optimize the execution of LM programs, not just the inference of LLM bare‬
‭bones. In the frontend, optimize the workflow of prompting and parallelization control. In the‬
‭runtime, enable the KV cache reuse for prefix tokens.‬

‭2. What's the impact of the work, e.g., why is it an important problem to solve?‬
‭To complete complex tasks, LM programs ​​require multiple generation calls, advanced prompting‬
‭techniques, control flow, and structured inputs/outputs. Therefore, it is not only important to‬
‭optimize the execution of LLM bare bones, but also to enable user-friendly‬

‭3. The main proposed idea(s).‬
‭1)‬ ‭“language primitives”. Simplify the programming workflow of LM programs by introducing‬

‭primitives in python for controlling prompt state, generation, and parallelism.‬
‭2)‬ ‭“prefix sharing”. Design a radix tree to retain prefix’s KV cache, enabling prefix search,‬

‭reuse, insertion, and eviction.‬
‭3)‬ ‭While using LLMs to follow specific formats with regex, recognize and allow multiple‬

‭tokens to be decoded in one forward pass.‬

‭4.‬‭A summary of your understanding of different components‬‭of the proposed technique,‬
‭e.g., the purpose of critical design choices.‬

‭●‬ ‭The idea of “language primitives” is inspired by the strong instruction-following ability of‬
‭LLMs. For example, “regex” primitive instructs LLM to output in a specified JSON‬
‭schema. It simplifies LM programs. Instead of manual string manipulation by‬
‭programmers, SGlang systems do it behind the scene.‬

‭●‬ ‭The idea of “prefix sharing”, i.e. radix attention, relies on the point of view of “LM‬
‭programs”. That’s because in the scenario where we submit questions to the local LLM‬
‭model, there are few prefixes to be shared among questions. The prefix sharing‬
‭technique is not profitable. However, in “LM programs”, system prompts required by‬
‭complex overflow become important, accounting for a significant shared portion of users’‬
‭input. Therefore, the optimization of “prefix sharing” becomes profitable.‬

‭●‬ ‭To increase cache hit rate, 1) page size, the smallest unit in prefix matching, is set as‬
‭one token. 2) the scheduler prioritizes requests in the waiting queue with longer matched‬
‭prefixes.‬

‭●‬ ‭The frontend-runtime codesign enables optimizations like “frontend hint” while using fork‬
‭primitive. Basically, the frontend can hint the processing of radix-trees, ensuring the‬
‭correctness of tree maintenance.‬

‭●‬ ‭In summary, they observe and verify structures in both frontend and runtime. So it is‬
‭named as a‬‭Structured‬‭Generation Language for LLMs.‬

‭1‬



‭5. Your perceived strengths and weaknesses of the work, e.g., novelty, significance of‬
‭improvements, quality of the evaluation, easy-to-use.‬
‭Strengths:‬

‭1)‬ ‭An efficient frontend and runtime codesign for LM programs. Improved the throughput‬
‭and latency.‬

‭2)‬ ‭The idea of “prefix sharing” can naturally support multi-modal models with images and‬
‭videos.‬

‭Limitation:‬
‭1)‬ ‭Focus on prefix sharing on one LLM instance.‬

‭Is there room for improvement? If so, which directions you may want to explore or idea‬
‭you have for improving the techniques?‬
‭I would like to work on “prefix sharing” among multiple LLM instances. Radix attention only‬
‭allows the prefix sharing for the requests processed on one LLM instance. However, in the‬
‭scenario of multiple LLM instances, one request’s longest cached prefix may exist in another‬
‭remote LLM instance.‬

‭1)‬ ‭Should we schedule requests across LLM instances based on the location of the longest‬
‭cached prefix? If so, compared with round-robins, will the balance of workload across‬
‭instances become a new issue?‬

‭2)‬ ‭If we still schedule requests across LLM instances in round-robins, should we migrate‬
‭the remote KV cache to the local? If so, how can we determine and reduce the migration‬
‭cost?‬

‭2‬


