Name: Jiankun Wang
Email: jiankun7@illinois.edu

Paper title: SGLang: Efficient Execution of Structured Language Model Programs

1. The problem the paper is trying to tackle.

The paper wants to optimize the execution of LM programs, not just the inference of LLM bare
bones. In the frontend, optimize the workflow of prompting and parallelization control. In the
runtime, enable the KV cache reuse for prefix tokens.

2. What's the impact of the work, e.g., why is it an important problem to solve?

To complete complex tasks, LM programs require multiple generation calls, advanced prompting
techniques, control flow, and structured inputs/outputs. Therefore, it is not only important to
optimize the execution of LLM bare bones, but also to enable user-friendly

3. The main proposed idea(s).
1) “language primitives”. Simplify the programming workflow of LM programs by introducing
primitives in python for controlling prompt state, generation, and parallelism.
2) “prefix sharing”. Design a radix tree to retain prefix’s KV cache, enabling prefix search,
reuse, insertion, and eviction.
3) While using LLMs to follow specific formats with regex, recognize and allow multiple
tokens to be decoded in one forward pass.

4. A summary of your understanding of different components of the proposed technique,
e.g., the purpose of critical design choices.

e The idea of “language primitives” is inspired by the strong instruction-following ability of
LLMs. For example, “regex” primitive instructs LLM to output in a specified JSON
schema. It simplifies LM programs. Instead of manual string manipulation by
programmers, SGlang systems do it behind the scene.

e The idea of “prefix sharing”, i.e. radix attention, relies on the point of view of “LM
programs”. That’'s because in the scenario where we submit questions to the local LLM
model, there are few prefixes to be shared among questions. The prefix sharing
technique is not profitable. However, in “LM programs”, system prompts required by
complex overflow become important, accounting for a significant shared portion of users’
input. Therefore, the optimization of “prefix sharing” becomes profitable.

e Toincrease cache hit rate, 1) page size, the smallest unit in prefix matching, is set as
one token. 2) the scheduler prioritizes requests in the waiting queue with longer matched
prefixes.

e The frontend-runtime codesign enables optimizations like “frontend hint” while using fork
primitive. Basically, the frontend can hint the processing of radix-trees, ensuring the
correctness of tree maintenance.

e In summary, they observe and verify structures in both frontend and runtime. So it is
named as a Structured Generation Language for LLMs.



5. Your perceived strengths and weaknesses of the work, e.g., novelty, significance of
improvements, quality of the evaluation, easy-to-use.
Strengths:
1) An efficient frontend and runtime codesign for LM programs. Improved the throughput
and latency.
2) The idea of “prefix sharing” can naturally support multi-modal models with images and
videos.
Limitation:
1) Focus on prefix sharing on one LLM instance.

Is there room for improvement? If so, which directions you may want to explore or idea
you have for improving the techniques?

| would like to work on “prefix sharing” among multiple LLM instances. Radix attention only
allows the prefix sharing for the requests processed on one LLM instance. However, in the
scenario of multiple LLM instances, one request’s longest cached prefix may exist in another
remote LLM instance.

1) Should we schedule requests across LLM instances based on the location of the longest
cached prefix? If so, compared with round-robins, will the balance of workload across
instances become a new issue?

2) If we still schedule requests across LLM instances in round-robins, should we migrate
the remote KV cache to the local? If so, how can we determine and reduce the migration
cost?



