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ABSTRACT

Zero Redundancy Optimizer (ZeRO) has been used to train a wide
range of large language models on massive GPUs clusters due to its
ease of use, efficiency, and good scalability. However, when training
on low-bandwidth clusters, or at scale which forces batch size per
GPU to be small, ZeRO’s effective throughput is limited because of
high communication volume from gathering weights in forward
pass, backward pass, and averaging gradients. This paper introduces
three communication volume reduction techniques, which we col-
lectively refer to as ZeRO++, targeting each of the communication
collectives in ZeRO. First is block-quantization based all-gather.
Second is data remapping that trades-off communication for more
memory. Third is a novel all-to-all based quantized gradient aver-
aging paradigm as replacement of reduce-scatter collective, which
preserves accuracy despite communicating low precision data. Col-
lectively, ZeRO++ reduces communication volume of ZeRO by 4x,
enabling up to 2.16x better throughput at 384 GPU scale.
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1 EXTENDED INTRODUCTION

Deep learning (DL) models have been applied successfully in many
different domains such as image/video analysis, natural language
processing, speech recognition, etc. Over years, the quality, func-
tionality, and coverage of these models have continued to improve.
Model size has been a key factor in this improvement. There is a
strong correlation of model size with accuracy and improved func-
tionality, and as result, the model size has grown dramatically in
recent years. For example, parameter size grows from 100 million
to 500+ billion from BERT [9] to Megatron-Turing NLG [33].
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Figure 1: Large scale training throughput are constrained by
network bandwidth and batch size per GPU

With the increase in model size, the memory and compute re-
quirements for training have increased significantly beyond the
capability of a single accelerator (e.g., a GPU). Training massive
models requires efficiently using aggregated computing power and
memory across hundreds or even thousands of GPU devices. There
are two popular approaches to this, namely 3D parallelism [22, 36]
and Zero Redundancy Optimizer (ZeRO) [29].

3D parallelism combines data parallelism [2, 6], pipeline paral-
lelism [13, 14, 21] and tensor parallelism [32] to distribute model
training workloads across hundreds of GPUs. This approach can
achieve excellent per-GPU computing and memory efficiency. How-
ever, a major downside here is the system and user complexity. It
puts the burden of refactoring the single GPU code to work for
3D parallelism on data scientists and Al practitioners, which is
nontrivial and often cumbersome.

In contrast, ZeRO offers an alternative that requires no model
code refactoring. ZeRO is a memory efficient variation of data paral-
lelism [2, 6] where model states are partitioned across all the GPUs,
instead of being replicated, and reconstructed using gather based
communication collectives on-the-fly during training. This allows
ZeRO to effectively leverage the aggregate GPU memory across
machines, at the expense of minimal communication overhead com-
pared to standard data parallel training (2M vs 3M for model size of
M) [29], while still achieving excellent throughput scalability [30].

1.1 Limitations of ZeRO

Ease of use of ZeRO combined with its ability to scale efficiently
across hundreds to thousands of GPUs, has resulted in its wide
adoption. However, there are two critical scenarios where efficiency
of ZeRO can be limited due to communication overhead: i) clusters
with low-bandwidth, and ii) at very small batch sizes per GPU.
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On one hand, clusters with low-bandwidth is common in major-
ity of cloud computing environments. Although high performance
nodes like DGX boxes [10, 11] are equipped with high-bandwidth
NVLink [25] and NVSwitch [26] as intra-node interconnects, cross-
node links are often less than 100Gbps ethernet which makes it
the communication bottleneck. As shown in Figure 1(a), the per
GPU throughput on low bandwidth clusters is only half of that with
high-bandwidth clusters.

On the other hand, even on high-bandwidth clusters, when run-
ning on thousands of GPUs, the batch size per GPU is limited by
the maximum global batch size that can be used during the train-
ing without sacrificing convergence efficiency [2, 17, 39]. In other
words, as global batch size cannot be increased indefinitely without
slowing down model convergence, training on thousands of GPUs
forces the batch size per GPU to be very small, which reduces the
compute-to-communication ratio and thus creates a communica-
tion bottleneck. As shown in Figure 1(b), the per GPU throughput
is heavily impacted by small batch size per GPU, which is a result
of communication bottleneck.

However, rare efforts have been made to optimize end-to-end
communication efficiency for ZeRO. There are many previous work
on reducing communication overhead in distributed model training,
such as 1-bit LAMB [18], 1-bit Adam [35] and other error compen-
sation compression techniques for gradient averaging [1, 12, 31, 34].
However, none of them can work with ZeRO as they all assume
model state replication, while model states are partitioned in ZeRO.
We start from scratch and provide an end-to-end system for reduc-
ing all communication overhead in ZeRO training.

1.2 ZeRO++

In this paper, we present a novel system of communication opti-
mizations collectively called ZeRO++ that offers dramatic commu-
nication volume reduction for ZeRO. Below we discuss the main
communication overheads in ZeRO, followed by three different
communication optimizations in ZeRO++ that address them.

Assume the model size as M. During the forward pass, ZeRO
[29] conducts an all-gather operation to collect all the parameters
(M) needed to train for all model layers. In the backward pass,
ZeRO re-collects parameters (M) with all-gather first, then each
GPU can compute local gradients. After that, ZeRO operates reduce-
scatter function to aggregate and redistribute gradients (M) across
accelerators. In total, ZeRO has a total communication volume of
3M, spreads evenly across 2 all-gather and 1 reduce-scatter.

To reduce these communication overheads, ZeRO++ has three
sets of communication optimizations, targeting each of the above
mentioned three communication collectives respectively:

Quantized Weight Communication for ZeRO (qwZ) First, in
order to reduce parameter communication volume during forward
all-gather, we adopt quantization on weights to shrink down each
model parameter from FP16 (2 bytes) to INT8 (1 byte) data type
before communicating, thus reducing the communication volume
by half. However, naively conducting quantization on weights may
lose model training accuracy. In order to preserve decent model
training precision, we adopt block-based quantization [8], which
conducts independent quantization on each subset of model param-
eters. There is no existing implementation for high performance
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block-based quantization. Thus, we implement highly optimized
quantization CUDA kernels from scratch.

Hierarchical Weight Partition for ZeRO (hpZ) Second, to re-
duce communication overhead of all-gather on weights during back-
ward, we trade GPU memory for communication. More specifically,
instead of spreading whole model weights across all the machines,
we maintain a full model copy within each machine. At the expense
of higher memory overhead, this allows us to replace the expensive
cross-machine all-gather on weights with intra-machine all-gather,
which is substantially faster due to much higher intra-machine
communication bandwidth.

Quantized Gradient Communication for ZeRO (qgZ) Third,
reducing communication cost of gradients using reduce-scatter is
even more challenging. Directly applying quantization to reduce
communication volume is infeasible. The main issue is, even by
incorporating block-based quantization to reduce-scatter opera-
tion, it will still significantly hurt model training accuracy. The
key reason behind is quantization will decrease value precision.
And reduction on low-precision values will accumulate and amplify
the errors. Therefore, we propose a novel and much more efficient
gradient communication paradigm as a general replacement of
reduce-scatter collective, where the gradients are compressed using
block-based INT4 quantization during the communication to re-
duce the communication volume, but the full precision is recovered
before the reduction operator to preserve training accuracy. We
call this ggZ, and is designed to i) overcome significant accuracy
loss that would result from low-precision reduction if we were
to simply implement reduce-scatter in INT4/INTS, and ii) avoid
accuracy degradation and significant latency overhead of a long
sequence of quantization and dequantization steps needed by a
ring [23] or tree [5, 37] based reduce-scatter (e.g., left of Figure 5),
even if we did the reductions in full-precision. Furthermore, ggZ
leverages the hierarchical nature of modern GPU clusters, where
intra-node bandwidth is significantly higher than inter-node, to
first reduce gradients within a node before doing cross-node re-
duction to minimize inter-node communication volume, resulting
in 2/4x communication volume reduction (INT8/4) compared to
FP16 reduce-scatter. We further reduce end-to-end latency of ggZ
by pipelining intra-node and inter-node communication and con-
ducting CUDA kernel fusion.

Communication Volume Reduction By incorporating all
three components above, we reduce the cross-node communication
volume from 3M down to 0.75M. More specifically, for forward
all-gather operation on model weights, by applying INT8 quanti-
zation, we reduce the communication size from M to 0.5M. Dur-
ing backward all-gather on weights, with our secondary copy of
model parameters, we reduce the communication size from M to
0. By replacing backward fp16 reduce-scatter on gradients to our
novel all-to-all based INT4 reduce-scatter, we reduce cross-node
communication from M to 0.25M. Thus, in total, we reduce 3M
communication to 0.75M.

Evaluation We implemented ZeRO++ and performed extensive
evaluation demonstrating three key results: i) scalability of GPT-3
like models on up to 384 GPUs achieving over 45% of sustained peak
throughput, ii) consistent speedup of up to 2.4x over ZeRO [29]
baseline across models ranging from 10-138B parameters, and iii)
comparing with baseline in 4x higher bandwidth cluster, ZeRO++
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achieves similar throughput in low-bandwidth setting. In addition,
we show the impact of each of the three optimizations in ZeRO++
and how they compose together. Furthermore, we also show the
impact of our optimized kernel implementations on end-to-end
system throughput. Finally, we conduct convergence evaluation in-
dicating that ZeRO++ has negligible impact on model convergence
and maintains similar model training accuracy as ZeRO baseline.
The main contributions of this paper are as follows:

e Blocked quantized weights (qwZ) reduces communication
volume of all-gather of weights by 50%.

e Hierarchical partitioning of model weights (hpZ) completely
eliminates inter-node all-gather communication in backward
propagation.

e Novel, all-to-all quantized gradient reduction collective (qgZ)
reduces gradient communication by 75% comparing with
reduce-scatter.

e Optimized Integration of each of the above techniques into
existing ZeRO implementation, that enables communication
and computation overlapping, and leverages custom high
performance CUDA kernels for quantization, dequantiza-
tion, as well as operator fusion (section 4). Our implementa-
tion translates the 4x communication volume reduction of
ZeRO++ into real throughput improvement.

o Extensive experiments shows that i) over 45% of sustained
peak throughput even at small batch sizes, ii) up to 2.4x end-
to-end system improvement over ZeRO, and iii) achieving
similar throughput in low-bandwidth cluster compared to
baseline in high-bandwidth cluster. In addition, we present
performance breakdown and analysis of diffrent components
of ZeRO++.0ur end-to-end training shows that ZeRO++ does
not affect model convergence.

e ZeRO++ is open-sourced and released as part of https://
github.com/microsoft/DeepSpeed

2 BACKGROUND AND RELATED WORK

2.1 Data, Model and 3D parallelism

Data parallelism (DP), pipeline parallelism (PP), and tensor paral-
lelism (TP) are three forms of parallelism used to train large models
across multi-GPU clusters. [6, 15, 20, 22] DP is commonly used
when model size fits within a single GPU memory. In DP, each GPU
holds a full copy of model weights and trains on separate input data.
MP is orthogonal to DP, and is often used in cases where model
size cannot fit into a single GPU’s memory. Instead of splitting
input data, model parallelism partitions a full model into pieces
and assigns each model piece onto a GPU. There are mainly two
approaches for model parallelism: i) pipeline parallelism (PP) and
ii) tensor parallelism (TP). PP [14, 15, 20] splits models vertically,
creating sequential stages consisting of a contiguous subset of lay-
ers. While there is sequential dependency between stages for an
input micro-batch, the stages can be executed in parallel across
micro-batches. In contrast, TP [22] splits each layer across multiple
GPUs, where each GPU works on a different part of the layer for
the same input.

3D parallelism [33, 36] refers to combination of DP, PP, and TP,
and is capable of achieving excellent throughput and scalability,
and has been used to train a wide range of large language models [4,
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19, 22, 28]. Despite being highly efficient, 3D parallelism is severely
limited by the fact that it requires complete rewrite of model and
training pipeline to make them compatible with 3D parallelism [33].

Algorithm 1: ZeRO algorithm

Input :model,worldSize
Output: model
1 while model not converged do

2 all_gather_Parameters(worldSize);

3 model.forward();

4 partition(worldSize);

5 all_gather_Parameters(worldSize);

6 model.backward();

7 partition(worldSize);

8 reduce_scatter_Gradients(worldSize);
9 optimizer.step();

10 end while
11 Return: model

2.2 ZeRO Optimizer

ZeRO is a memory-optimized solution for data parallel training.
ZeRO partitions and distributes all model states (i.e., parameters,
gradients, optimizer states) among GPUs in use and recollects model
states only when the layer needs to be computed. There are three
different stages for using ZeRO to optimize on-device memory
usage. In ZeRO stage 1 (ZeRO-1), only optimizer states are split and
spread across all GPUs in use. ZeRO stage 2 (ZeRO-2) partitions
both optimizer states and gradients, where ZeRO stage 3 (ZeRO-3)
splits all three components of model states as parameters, gradients,
and optimizer states.

ZeRO-3 is the most memory efficient solution for model training
at large scale, but at the cost of more collective communications. Al-
gorithm 1 illustrates the high-level pseudocode for ZeRO-3. During
model training, ZeRO-3 lazy-schedules the fetching of parameters
until the computation needs to happen on a particular layer. Before
forward propagation, ZeRO launches an all-gather to collect the
full model weights and then computes the forward pass (line 2-3)
of Algorithm 1. Then ZeRO empties the all-gather weights buffer
after forward computation completes (line 4). During backward,
ZeRO re-collects all model weights again via a second all-gather
(line 5) to calculate gradients (line 6). Once gradients are calcu-
lated on each GPU, ZeRO empties weights buffer again (line 7) and
conducts a reduce-scatter operation to do gradient averaging and
re-distribution (line 8). Model states and parameters are updated
in optimizer step (line 9). In a nutshell, to minimize the on-device
memory footprint using ZeRO-3, three collective communication
operations are issued at each training iteration, which include 2
all-gather on weights and 1 reduce-scatter on gradients.

2.3 Communication Reduction Techniques

Quantization: Quantization is often used to reduce memory
footprint, and data movement volume by using low precision to
represent data [7, 8]. However, the loss of information from rep-
resenting high precision data with lower precision often comes
with accuracy degradation. Many related work focus on improving


https://github.com/microsoft/DeepSpeed
https://github.com/microsoft/DeepSpeed

ABC, 2023, USA

quantization accuracy. The fundamental challenge of quantization
accuracy lies in the vast difference in number ranges and granu-
larity between high precision and low precision data (Eg. FP32/16
vs. INT8). Some related work [41] propose to filter the outliers in
data to mitigate the gap in numerical ranges. Yet their accuracy
hinges on the quality of outlier filtering and it brings extra filtering
overhead. Dettmers et al. [8] proposes to use block based quantiza-
tion on optimizer states to improve the quantization accuracy yet
it requires changes to the model structure thus limits its usability.

Gradient Compression: Starting from 1-bit SGD of error-
compensation compression [31], gradient compression has been
pushed to an extreme direction of using just a single bit. To deal
with non-linear gradient-based optimizers like Adam or Lamb, 1-bit
quantization algorithms like 1-bit Adam [35] and 1-bit Lamb [18]
are proposed, which achieve extreme efficient gradient communica-
tion in distributed training. However, 1-bit Adam/LAMB cannot be
directly applicable to ZeRO-3. The main reason is 1-bit Adam/Lamb
assumes each GPU has the full view of optimizer states (OS) for
the model, but ZeRO-3 splits it across all the GPUs in use. There-
fore, it is infeasible to directly apply existing gradient compression
techniques at ZeRO-3 and we need to design our own.

ZeRO Communication Reduction: To reduce expensive cross-
node communication, recent optimization on ZeRO-3, such as MiCS
[40], trades on-device memory for communication. In MiCS, the
GPU cluster is divided into sub-groups, and model states are par-
titioned within a sub-group but replicated across sub-groups. By
keeping the sub-group size small, MiCS can either leverage high
bandwidth intra-node interconnect, or use hierarchical communi-
cation to lower the communication volume. hpZ in ZeRO++ adopts
a similar approach of trading memory for less communication. The
key difference is that hpZ only do secondary partition on weights,
while keeping all other model states partitioned across all GPUs.
This allows hpZ to achieve significant communication reduction
without the massive memory overhead of MiCS.

3 DESIGN

In this section, we elaborate on the design of our three key op-
timizations in ZeRO++ introduced in Section 1 for reducing the
communication overhead of ZeRO: i) Quantized Weight Commu-
nication for ZeRO (qwZ), ii) Hierarchical Partitioning for ZeRO
(hpZ), and iii) Quantized Gradient communication for ZeRO (ggZ2).
After that, we discuss the end-to-end impact of these optimizations
to reduce to total communication volume of ZeRO.

3.1 Quantized Weight Communication for
ZeRO (gwZ)

As discussed in Section 2.2, ZeRO partitions the model weights
across all the ranks (i.e., GPUs) and fetches the FP16 weights layer-
by-layer right before they are needed in computation via all-gather
for the forward and backward of each training iteration. To reduce
the communication overhead of forward all-gather on weights,
qwZ, quantizes FP16 weights to INT8 right during the all-gather,
and dequantizes them back to FP16 on the receiver side, and then
conducts layer computation.
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Figure 2: Illustration & example of block based quantization
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Figure 3: hpZ removes cross node traffic in backward all-
gather by holding secondary weight partitions in on-device
memory.

While this reduces the communication volume of the all-gather
by 2x, doing so naively results in two major issues: i) the lower-
ing of precision results in significant accuracy degradation during
training as discussed in 2.3, and ii) the quantization and dequanti-
zation overhead negates any throughput gain from communication
volume reduction. We discuss the optimized implementation of
qwZ to minimize the quantization and dequantization overhead in
Section 4. Here, we primarily focus on design choices to mitigate
accuracy degradation.

qwZ uses blocked based quantization to improve the quanti-
zation accuracy. As illustrated in Figure 2, each weight tensor is
divided into smaller chunks, and converted into INT8 by symmetric
quantization, using an independent quantization scaling coefficient.
By keeping the quantization granularity small, we significantly
mitigate the gap in number ranges and granularity.

We show an example of the quantization error of performing
block based quantization vs. the non-blocked quantization baseline
in Figure 2(a). Fig. 2(b) shows a case study of weights quantization
on BERT model, where block based quantization reduces the quan-
tization error by 3x. More in-depth convergence evaluations are
shown in Sec. 5.
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3.2 Hierarchical Partitioning for ZeRO (hpZ)

ZeRO-3 partitions all its model states across all its ranks, resulting
in communication collectives that span all the GPUs. With hpZ,
we notice that it is possible to have different partitioning for dif-
ferent model states, limiting the communication collectives to a
subset of the GPUs. Given that on modern GPU clusters, intra-node
communication bandwidth is significantly higher than inter-node
communication bandwidth, this presents opportunities to reduce
the inter-node communication.

More specifically, in hpZ, we eliminate the inter-node all-gather
during the backward pass by holding secondary FP16 weights par-
tition within each node. We do this by creating a hierarchical parti-
tioning strategy consisting of two partitions: first, all model states
are partitioned globally across all devices as in ZeRO-3, which we
call primary partition. Second, a secondary copy of FP16 parame-
ters is partitioned at the sub-global level (e,.g., compute node, see
figure 3), which we call secondary partition. This secondary copy of
FP16 parameters is replicated across multiple secondary partitions.

Consider a 64-node cluster, each node with 8 GPUs. Model
weights are partitioned in two stages: i) across all 512 GPUs that we
call primary partition, and ii) the same weights are also partitioned
within a compute node across 8 GPUs, that we call secondary par-
tition. In this example, for the secondary partition, each compute
node in the cluster holds a full replica of FP16 weights partitioned
among the 8 GPUs within the node, and there are 64 of such replicas
in total.

3.2.1 A training iteration with hpZ. During the forward pass of a
training iteration, we all-gather weights based on the primary parti-
tion across all GPUs. However, once the weights are consumed dur-
ing the forward pass, they are partitioned based on the secondary
partition. Given the temporal consistency of model parameters be-
tween forward and backward passes, when the weights are needed
again during the backward pass, we all-gather weights based on this
secondary group. Note that when the secondary partitioning is set
to be a compute node, this avoids any inter-node communication
for this all-gather. Finally, at the end of the iteration, during the
optimizer step, all the model states, as well as the primary copy of
the fp16 parameter are updated based on the primary partition. hpZ
makes two changes to baseline ZeRO pseudocode in Algorithm 1:
i) in line 4, parameter partitioning is based on secondary group size,
ii) parameter all-gather preceding backward pass in line 5 is also
based on secondary group size.

Our design of hpZ is flexible to support any secondary group
size. The group size controls how many ranks (i.e., GPUs) are in the
secondary partition. It is also a measure of memory-communication
trade-off of hpZ. Simply put, by default, hpZ secondary partition is
node-based (recall intra-node bandwidth is multiple factors of inter-
node bandwidth for current and future hardware configurations)
but can be extended to support multiple compute nodes as needed.

3.22 Memory Usage Analysis. By design, hpZ trades memory for
communication efficiency. It is important to analyze this tradeoff.
Recall that standard data parallel DNN (DP) replicates model param-
eters across data parallel ranks, ZeRO-3 on the other hand partitions
parameter across data parallel ranks. A midway approach is model
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Figure 4: Per-device memory consumption analysis of stan-
dard data parallel (DP), ZeRO stage 3 (ZeRO-3) and proposed
hierarchical partitioning of ZeRO parameters (hpZ). K de-
notes the memory multiplier of optimizer states, M repre-
sents the number of trainable parameters, P is the data paral-
lel group size or world size, and « is the number of secondary
groups or ratio of world size to the number of ranks in the
secondary group. A typical real world scenario example is
provided in the last column. We assume a model size of 100B
trained on 1024 V100 GPU DGX cluster (64 compute nodes,
16 GPUs per node).

parameters partitioned across a subset of devices as long as model
parameters fit.

Figure 4 provides a concrete memory usage estimate of a typical
large language model of size of 100B parameters, with primary
group size of 1024 GPUs and secondary group size of 16 GPUs
(e.g., DGX-2 V100 node). As shown in Figure 4, with our proposed
method, hpZ consumes 8.9x more memory than ZeRO-3, our ap-
proach is still 114x less memory requirement than standard DP.
This marginal increase in memory usage is compensated for by
efficient intra-node communication schedule. By eliminating or
reducing inter-node communication for backward pass, hpZ re-
duces the end-to-end communication of ZeRO by 1.5x, while still
supporting model training with hundreds of billions of parameters.

3.3 Quantized Gradients Communication for
ZeRO (q97)

In this section, we propose a novel quantized reduce-scatter algo-
rithm called qgZ based on all-to-all collectives that enables a 4x
communication volume reduction of gradient reduce-scatter by re-
placing FP16 with INT4 quantized data, while overcoming precision
loss challenges described in Section 1, as well as numerous system
challenges that we will outline in this section.

qgZ leverages all-to-all collectives to implement quantized reduce-
scatter which includes three major components: 1) all-to-all-based
implementation of quantized gradient reduce-scatter, 2) reducing
communication volume with hierarchical collectives, 3) tensor slice
reordering for correct gradient placement. We talk about each of
them step-by-step.

3.3.1  All-to-all based implementation. A naive approach towards
quantized reduce-scatter, while avoiding precision loss due to re-
duction is to apply quantization and dequantization to a ring-based
reduce-scatter directly as shown on the left of Figure 5. We can
inject quantization and dequantization on each GPU. Once a GPU
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Figure 6: Communication volume comparison between
ZeRO-3 reduce-scatter and qgZ 1-hop all-to-all.

receives gradients from its predecessor, we dequantize it to recover
full precision and conduct a local reduction. Next we can quantize
local reduction output and pass quantized data to its successor. To
finish the whole reduce-scatter, the number of sequential quanti-
zation and dequantization kernels is equal to the number of GPUs
(i.e,, n) in use.

Thus, applying quantization and dequantization on existing ring
based reduce-scatter collective will lead to high communication
latency and low value precision due to multiple sequential quantiza-
tion and dequantization steps. Although recent tree-based collective
like Blink[38] could reduce the number of sequential kernels from n
to log(n), the long latency and low precision issue is not completely
resolved.

To overcome this, we completely abandon existing ring-based
reduce-scatter approach and incorporate 1-hop all-to-all collec-
tive for our gradient communication. As shown on the right of
Figure 5, we first apply quantization on a given tensor, then we
conduct all-to-all communication among all the GPUs. After all-to-
all, we apply another dequantization to recover the data precision
and then reduce on high-precision values to get the final gradi-
ent reduction output. By replacing ring-based solution with our
all-to-all collective, we reduce the number of sequential quantiza-
tion+dequantization kernel from the number of GPUs to 1. Thus,
we solve the long latency and low precision issues when applying
quantization in reduce-scatter for supercomputing scenarios like
DGX boxes connected in fat-tree topology.
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3.3.2  Reducing inter-node communication volume. Although replac-
ing reduce-scatter with all-to-all achieves single-shot quantization
and dequantization, it introduces a new problem; the inter-node
communication volume increases instead of decreasing despite the
quantization of data. We elaborate on this in Figure 6.

Here we assume model size of M, GPU per node is N, gradient
compression ratio as Z. Reduce-scatter, reduces the data during
transmission over the ring, thus the total amount of data for cross-
node communication is M. However, when using our 1-hop all-to-all
approach, even though the data are compressed before communica-
tion (i.e., M/Z), each GPU needs to send out M/Z amount of data
to GPUs on the other nodes. Therefore, each machine will generate
N xM/Z amount of cross-node communication data, which is much
bigger than reduce-scatter communication volume.

To address this, we do a hierarchical 2-hop all-to-all instead of
1-hop: a) first intra-node all-to-all and b) followed by inter-node all-
to-all, which is shown as Figure 7. First, with high-bandwidth links
among GPUs inside a machine, we conduct intra-node all-to-all on
quantized data, then dequantize data and reduce on dequantized
data. After intra-node quantization, all-to-all, dequantization, and
reduction, we reduce the data size per GPU from M/Z to M/(ZN).
After intra-node all-to-all is completed, we conduct the inter-node
all-to-all communication, which is similar to 1-hop all-to-all we
described above. Given that now each GPU only needs to send
out M/(Z = N) data, the communication volume per machine is
now M/(Z « N) « N = M/Z. By adopting this hierarchical all-to-all
communication as 2-hop approach, we resolve the communication
volume blow-up issue in our 1-hop scheme perfectly. Note that
even though the total communication volume is doubled (one intra-
node, the other inter-node), intra-node communication introduces
negligible overhead given NVLink/NVswitch high bandwidth, and
cross-node traffic has been significantly reduced, which is the major
bottleneck in gradient communication.

3.3.3 Tensor slice reordering for correct data placement. With the 2-
hop all-to-all, the inter-node communication volume is as expected,
however, this introduces a gradient misplacement issue. We describe
this issue using a 2x2 example, where we have 2 machines and each
machine has 2 GPUs. As shown in Figure 8, the correct final gradient
placement is shown as green boxes in the figure, where GPU 0 holds
final gradient partition 1, GPU 1 holds gradient partition 2, so on
and so forth.
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Figure 8: Gradient partition misplacement when applying
hierarchical all-to-all in qgZ.

Our 2-step all-to-all communication works as follows, first we
divide all gradients on each GPU into 4 chunks, then conduct our
intra-node all-to-all. After intra-node all-to-all finishes, GPUO (i.e.,
GO0) holds partial aggregated gradient partition 1,2 whereas G1 holds
gradient partition 3,4. Same thing happens on G2 and G3. Since G1
does not have gradient partition 2 (which is supposed to be held by
G1) while G2 does not have gradient partition 3, after inter-node
all-to-all, there is gradient misplacement issue on both G1 and G2.

We address this with tensor slice reordering. As shown in Fig-
ure 9, before intra-node all-to-all begin, we first swap the tensor
slice order of slice 2 and 3, which is shown as orange arrows. Then
after intra-node all-to-all is completed, G1 now has gradient 2 while
G2 has gradient 3. Therefore, after the inter-node all-to-all, all GPUs
get the correct gradient placement. Mathematically, given X GPUs
per node and Y nodes in total, each GPU will hold X*Y gradient
slices initially. Our tensor slice reordering works as follows:

before:[0,1,2,3,4,..YX -3, YX -2, YX — 1] (1)

after: [0,X,2X, .(Y = DX, LX+1,(Y = DX +1,..YX — 1] (2)

Based on Equation 1 and 2, we can map each original tensor slice
position (i.e., Equation 1) to new tensor slice position (i.e., Equation
2) on each GPU to correct final gradient misplacement issue.

In summary, by solving above three challenges step-by-step,
we design a novel gradient communication and reduction proto-
col, which can be a more communication efficient and generalized
replacement of reduce-scatter collective. We discuss some of the
optimization and implementation details for our approach in Sec. 4.

3.4 ZeRO++ Communication Volume Analysis

Table 1 illustrates theoretical communication volume comparison
between ZeRO-3 and ZeRO++. We assume the model size of M. As
described in Section 2, during ZeRO-3 there are 3 collective calls:
all-gather on weights in forward pass, then all-gather on weights
in backward pass and last is reduce-scatter on gradients in the
backward. And each collective communicates M volume of data.
With ZeRO-3, in total we need to communicate 3M data per each
training iteration. Given that intra-node communication is fast with
NVLink and NVSwitch, we ignore intra-node communication and
focus on cross-node traffic only. For all-gather in the forward pass,
by incorporating our quantized weights communication, we reduce
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Figure 9: Tensor slices reordering to correct gradient mis-
placement in qgZ.

Comm. forward | backward backward
Volume | all-gather | all-gather | reduce-scatter
ZeRO-3 M M M
ZeRO++ 0.5M 0 0.25M

Table 1: Communication volume comparison between ZeRO-
3 and ZeRO++.

communication volume from M to 0.5M. During the all-gather in
the backward pass, by holding secondary weights partition within
each node, we completely removed cross-node traffic. For reduce-
scatter in the backward pass, by replacing reduce-scatter with our
novel quantized gradient communication protocol, we reduce cross-
node traffic from M to 0.25M. Therefore, compared with ZeRO-3,
ZeRO++ reduces communication volume from 3M down to 0.75M
for each training iteration.

4 OPTIMIZED IMPLEMENTATION

In this section, we discuss two key optimizations that enable ZeRO++
to fully realize the potential of 4x communication volume reduction
to improve throughput without getting limited by implementation
overheads: i) overlapping different communication and compute
streams, when doing so enables better resource utilization, and
ii) optimized CUDA kernels for quantization, dequantization, and
tensor slice reordering operators, and kernel fusion across these op-
erators when appropriate to minimize the memory traffic overhead.
Below we discuss the two lines of optimization in detail.

4.1 Overlap Compute and Communication

To reduce end-to-end communication time, we overlap quantization
computation with communication for all-gathering of weights in
both forward and backward passes. For the hierarchical all-to-all
based reduce-scatter implementation of gradients, we overlap the
intra-node communication with inter-node communication.

4.1.1  Communication-computation overlapping on weights. For all-
gather on weights, we enable communication-computation overlap
using two key features : i) we track the execution order of model
layers to get the sequence they will be fetched. ii) we guarantee
asynchronous quantization execution. Specifically, the call to the
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Algorithm 2: Generalized tensor slice reordering (q92)
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Figure 10: Pipelining and overlapping intra-node communi-
cation with inter-node communication in ggZ.

quantization kernel is non-blocking and we further avoid operations
that involve explicit/implicit CUDA synchronization (e.g. tensor
concatenation), making the quantization a non-blocking operation
that can be launched asynchronously.

With this two features, as ZeRO fetch parameters for each layer,
the communication of the current layer and the quantization of the
next layer can be launched at the same time on different CUDA
streams. When the quantized data are needed for the next layer,
ZeRO++ synchronizes the quantization stream to make sure the
quantized data are ready. This approach hides the quantization cost
of the next layer under the communication time span of the current
layer which hides the quantization overhead.

4.1.2  Hierarchical Collectives for Gradient Communication. As dis-
cussed in Sec. 3.3.2, our all-to-all based gradient communication is
broken into two stages: first intra-node communication followed
by inter-node communication. The inter-node communication de-
pends on the results of the intra-node communication, therefore,
with a naive implementation, inter-nodes links are idle during intra-
node communication and vice versa. To reduce latency by leverag-
ing both inter-node and intra-node links in parallel, we chunk our
input gradient tensor and pipeline transfer between intra-node com-
munication and inter-node communication. As shown in Figure 10,
compared with "no pipeline” case on the top, simply adopting a "2-
stage pipeline" transfer achieves the amount of end-to-end latency
reduction shown as the red arrow-line in Figure 10. By overlapping
intra-node and inter-node communication, the end-to-end latency
of gradient communication is significantly reduced.

Doing this pipeline correctly has implications on our tensor slice
reordering process. The more pipeline stages we have, the more
fine-grained tensor slices are needed for reordering. Therefore,
we also propose a generalized tensor slices reordering scheme as
algorithm 2, which covers both w/ and w/o pipelining data transfer
cases. Here stages refer to the number of pipeline stages we have,
nodeSize is the number of GPUs per node and nodes is the number
of nodes.

Next, we discuss how we optimize our CUDA kernels to further
reduce all quantization related overhead.

Constants:stages, nodeSize, nodes
Input :partitionID
Output  :mappedPartition]D

1 totalDevices < nodeSize * nodes;

2 stagelD <« partitionID % totalDevices;

partitionlD
3 chunkID « totalDevices’
4 pipelineOf fset « stagelD * totalDevices;
5 chunkOf fset «— stagelD

nodeSize’

6 chunkBase « (chunkID % nodeSize) * nodes;
7 Return: pipelineOf fset + chunkBase + chunkOf fset;

4.2 CUDA Kernels

As existing quantization implementations are unable to capture
the combination of data mapping and high throughput necessary
to minimize kernel overhead, we implement and optimize custom
CUDA kernels to implement these primitives. In particular, these
kernels aim to (1) saturate device memory bandwidth and (2) mini-
mize the total traffic via fusion.

Maximizing Bandwidth Utilization: A core quantization and
dequantization library of composable operators was developed as
the foundation for ZeRO++. The core primitives leverage efficient
vectorized memory accesses at the maximum granularity a given
GPU architecture supports. In order to satisfy the alignment re-
quirements these instructions have, model state is partitioned such
that quantization granularities will be 16B aligned. Additionally,
we leverage instruction level parallelism to overlap multiple mem-
ory transactions with each other. In practice, the combination of
vectorized accesses and instruction level parallelism enables the
quantization library to achieve full GPU memory bandwidth uti-
lization.

Minimizing Total Traffic: Multiple techniques are used to re-
duce the total memory traffic for quantization kernels. First, the
size of each quantization block is tuned so as to express sufficient
parallelism to schedule across a GPU’s streaming multiprocessors
and cache values not quantized yet in the register file while cal-
culating the quantization scale and offset for the block. Second,
we fuse tensor reshaping and quantization into the same kernel to
avoid redundantly loading data from global memory. For example,
the tensor slice reordering (i.e., orange arrow-lines in Figure 9) is
realized within a fused quantization and remapping kernel.This
fused kernel achieves the same level of performance as a single
quantization kernel working with contiguous data. Finally, we fuse
sequential dequantization, reduction, and quantization operations
into single kernel implementation, which reduces total memory
traffic by 9x in qgZ.

5 EVALUATION

In this section, we perform three sets of evaluations for ZeRO++.
First, we perform end-to-end evaluations showing : i) scalability
evaluation on up to 384 GPUs, ii) speedup over state-of-the-art
(SOTA) baseline across models ranging from 10-138B parameters,
and iii) throughput comparisons for cluster setting with varied
cross-node bandwidth. Second, we perform throughput analysis
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Figure 11: Scalability on up to 384 GPUs of 18B model with
different numbers of InfiniBand connections and tokens per
GPU

and breakdown, evaluating the impact of different components of
ZeRO++, as well as the impacts of our kernel optimizations on
end-to-end throughput. Finally, we show convergence evaluation
indicating that ZeRO++ doesn’t harm model convergence and main-
tains similar model training accuracy.

5.1 Methodology

Hardware: 24 NVIDIA DGX-2 nodes where each with 16 V100
SXM3 32 GB GPUs [11]. The nodes are connected by InfiniBand
(IB) with NVIDIA SHARP support [16], achieving total inter-node
bandwidth of over 800 Gbps. To evaluate ZeRO++ in clusters un-
der different network environments, we show the performance of
ZeRO++ running with different cross-node bandwidth by enabling
from 1 to 8 IB connections (i.e., 100 Gbps to 800 Gbps).

Baseline: We use ZeRO-3 as the baseline given its ease-to-use for
training giant models at large scale. To evaluate the performance of
our optimized kernels, we also implemented ZeRO++ with PyTorch
quantization[27] and non-fused kernels as baselines for our ablation
study.

Model Configurations: We use GPT-style transformer models for
evaluation. Given Megatron-Turing-NLG [33] training 530B model
on 2K GPUs using 2K tokens per GPU (i.e., micro batch size), we
evaluate ZeRO++ with the same 2k tokens per GPU setting. We also
evaluate on 1K tokens per GPU to test ZeRO++ with more extreme
scale scenario. The number of layers and hidden sizes are adjusted
to have models of different sizes. Please refer to the appendix and
our open-sourced evaluation scripts for hyperparameters and other
training details.

5.2 EZ2E System Evaluations

We evaluate ZeRO++ end-to-end performance here. One key metric
we use here is the percentage of peak performance, which is shown
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Table 2: End-to-end speedup of ZeRO++ on 384 GPUs with
different model sizes

1 IB Connection 8 IB Connections
Model  Tokens | Baseline ZeRO++ Speed Baseline ZeRO++ Speed
Size  per GPU | TFLOPs TFLOPs “P°““P | Tprops TrLOPs “PeC'P
138B 2K 19.96 37.90 1.90x 47.55 55.30 1.16x
138B 1K 11.25 21.81 1.94x 34.19 44.38 1.30x
91B 2K 19.99 38.06 1.90x 47.74 56.26 1.18x
91B 1K 11.27 21.93 1.95x 34.49 44.36 1.29x
49B 2K 20.06 38.08 1.90x 48.05 56.24 1.17x
49B 1K 11.27 21.95 1.95x 34.54 44.46 1.29x
18B 2K 25.98 46.40 1.79x 47.31 53.65 1.13x
18B 1K 14.15 30.57 2.16x 31.27 37.87 1.21x

Model Size: 18B Model Size: 138B

Micro Batch per GPU: 2K Tokens Micro Batch per GPU: 2K Tokens
57 60
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Figure 12: ZeRO++ achieving high bandwidth cluster perfor-
mance with significantly lower bandwidth

as equation 3.
peak_per formance = achieved_TFLOPs/max_TFLOPs (3)

Given that we use V100 GPU, its max_TFLOPs is 120 TFLOPs [24]
for mixed precision computation. Thus, our reported peak perfor-
mance refers to the percentage number of achieved_TFLOPs/120.

5.2.1 Scalability upto 384 GPUs. In Figure 11, we present ZeRO++
scalability evaluation from 64 to 384 GPUs with 18B model on both
low (1 IB) and high (8 IB) bandwidth clusters. On low bandwidth
cluster, ZeRO++ achieves 30% and 38.3% of peak performance (120
TFLOPs) even at 384 GPUs for 1K and 2K batch sizes, which is much
higher compared to 12.5% and 21.6% as baseline peak performance.
This presents up to 2.4x better throughput. On high bandwidth
cluster, despite having significantly more bandwidth, ZeRO++ still
enables up to 1.29x better throughput, and can achieve up 45%
of sustained peak throughput at 384 GPUs. ZeRO++ significantly
speed up large scale training for low bandwidth clusters while
archiving decent speedup even on high bandwidth clusters.

5.2.2  Throughput for different model sizes. Table 2 compares train-
ing throughput for models of 18B-138B on 384 GPUs between
ZeRO++ and baseline on both low and high bandwidth clusters. On
low bandwidth cluster, ZeRO++ consistently achieves over 31.5%
and 18.1% peak performance for 2K and 1K batch sizes on all models.
Compared with the baseline peak performance of 16.6% and 9.3%,
the speedup is up to 2.16x. On high bandwidth cluster, ZeRO++
peak performances are 44.7% and 31.5%, which is 1.3x over the base-
line peak performance of 31.5% and 26.0%. ZeRO++ is robust and
offers consistent speedup across different model and batch sizes as
well as across clusters with different network bandwidths.
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Table 3: End-to-end performance when using ZeRO++ w.\wo.
optimized kernels

Optimized | Optimized
Quantization Fusion TFLOPs
Kernel Kernel

Baseline N/A N/A 15
ZeRO++ No No 19.73
ZeRO++ No Yes 21.6
ZeRO++ Yes No 31.40
ZeRO++ Yes Yes 36.16

5.2.3 Democratization for large scale training. Figure 12 compares
the throughput of ZeRO++ on a low cross-node bandwidth (200
Gbps as 2 IB) cluster with the baseline running on 800 Gbps high-
bandwidth (8 IB) cluster. For small model of 18B, ZeRO++ achieves
a higher peak performance of 41.6% compared with baseline peak
performance of 39.1% despite running with 4x lower cross-node
bandwidth. For large model of 138B, ZeRO++ and baseline achieve
the same peak performance of 40%, but baseline runs at 4x higher
cross-node bandwidth. This evaluation shows that ZeRO++ makes
large scale training more accessible by significantly decreasing the
minimum cross-node bandwidth requirement for efficient training.
Furthermore, it demonstrates that optimized ZeRO++ implemen-
tation effectively translates the 4x communication reduction of
ZeRO++ into real end-to-end system throughput gain.

5.3 Throughput Breakdown and Analysis

5.3.1 Impact of Individual Techniques. In Figure 13, we show the
individual and combined impact of qwZ, hpZ, and qgZ, on the
throughput of 18B model on 128 GPUs. On low bandwidth clusters,
each of these techniques enables a speedup ranging from 1.3-1.4x
compared with baseline, while achieving an aggregated speedup of
up to 2.26x. Note that our TFLOPs throughput is calculated from
wall-clock time measurement, ZeRO++ aggregated throughput gain
is not equivalent to sum of qgZ, qwZ, hpZ gain. We can validate
the theoretical speedup with composition of our techniques by
accumulating the speedup multiplicatively: 1.4 * 1.26 * 1.3 = 2.29,
which is very near to what we achieved as 2.26x.

For high bandwidth clusters, the individual speedup ranges be-
tween 1.13-1.16x, for a combined speedup of up to 1.3x. The figure
demonstrates that each of these techniques has a similar impact
towards throughput improvement and they compose effectively to
produce a much larger aggregated speedup.

5.3.2  Impact of Kernel Optimizations. Here, we evaluate the impact
of our optimized kernels on ZeRO++ throughput using a 18B model
running on 64 GPUs.

Quantization Kernel: As shown in Table 3, compared with the
baseline that uses PyTorch quantization [27], our optimize quantiza-
tion kernels can achieve up to 1.67x speedup in terms of end-to-end
throughput. Also, the baseline implementation suffers performance
degradation as group number increases which means the through-
put gap will be larger when used with larger models.
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Figure 13: Throughput of 18B models on128 GPUs with
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Table 4: hpZ vs MiCS evaluation on a 4 node cluster (16 V100
GPUs per node)

. . ZeRO hpZ MiCS

Model Size | Token Size TFLOPs | TFLOPs | TFLOPs
7.5B 1K 36.99 38.39 38.96
7.5B 2K 53.3 54.4 52.72
18B 1K 51.47 52.42 OOM
18B 2K 60.94 61.44 OOM

Kernel Fusion: As described in Section 4.2, kernel fusion is one
of our key optimizations to improve memory throughput when ex-
ecuting sequences of CUDA kernels. Our fusion includes 1) tensor-
reorder and quantization fusion 2) intra-node dequant, intra-node
reduction and inter-node quant fusion. As shown in Table 3, we
achieve up to 1.15x speedup on the end-to-end throughput.

5.3.3  Comparing hpZ with MICS. As previously discussed in Sec-
tion 2, closely related to hierarchical weight partition for ZeRO
(hpZ) is MiCS[40]. Key difference of the two methods is what data
are replicated in secondary group; model weights are replicated
in hpZ, entire model states are replicated in MiCS. Table 4 shows
per-GPU throughput of both methods for different model and token
size configurations. The table also shows that given a secondary
partition size of a single node (16 V100 GPUs), hpZ can support
18 billion parameter model where as MiCS reports out-of-memory
(OOM) at this scale.

5.4 Model convergence analysis

Next we evaluate ZeRO++’s impact on model convergence by train-
ing GPT-350M model with 30B tokens on the pile dataset [3] us-
ing ZeRO++, ZeRO++ with basic (non-blocked) quantization, and
ZeRO-3 as baseline. All hyperparameters are kept the same between
baseline training and ZeRO++ trainings to ensure fair comparison.
The convergence is measured by the validation LM loss.

As shown in Figure 14, we present end-to-end training trace.
The training with basic (non-blocked) quantization diverged at
the beginning so there is no visible data, on the contrary, ZeRO++
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Figure 14: Training convergence for GPT-350M on 30B tokens

Table 5: Validation loss at the end of training (GPT 350M /
30B tokens)

Evaluation LM loss

Baseline 2.121762
ZeRO++

(hpZ&qwZ&qgZ on) 2165584
ZeRO++

(hpZ&qwZ on; 2.134013

qgZ on for first 50%)

ZeRO++

(hpZ&qwZ on; qgZ off) 2121653

is closely aligned with the baseline, and also confirms our previ-
ous analysis of better quantization accuracy by using block based
quantization.

We further extended the convergence evaluation by comparing
the final evaluation loss at the end of training. As shown in Ta-
ble 5, even with all three optimizations on, the final evaluation
loss is only off by 1%. We further merged this convergence gap by
using a straightforward interleaving schedule where the hierarchi-
cal partitioning and quantized weights are turned on throughout
the training and the quantized gradient is only turned on for the
first 50% of training. For a more extended case, we also evaluate
hierarchical partitioning and quantized weights alone. The results
suggest our convergence is identical to the baseline in this case.

6 CONCLUSION

This paper present ZeRO++, an efficient collective communication
solution for giant model training using ZeRO stage-3. We optimize
both model weights and gradients communication in forward and
backward pass of each training iteration. To reduce communica-
tion volume of model weights in forward propagation, we adopt
block-based quantization and data pre-fetching. To remove cross-
node communication of weights during backward pass, we hold
secondary model partition on each node to trade memory for com-
munication. To minimize gradient communication during backward
propagation, we design and implement a novel all-to-all based gra-
dient quantization and reduction scheme. By incorporating all the
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three optimizations above, we improve system throughput up to
2.16x in large scale model training using 384 V100 GPUs. We envi-
sion ZeRO++ as the next generation of easy-to-use framework for
training giant models at trillion-level model scale.
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